English

Evaluate ∫2−1 (e3x+7x−5) dx as a limit of sums - Mathematics

Advertisements
Advertisements

Question

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums

Sum

Solution

`int_(-1)^2(e^3x+7x-5)dx`

Here ` f(x)=e^(3x)+7x-5`

a=-1, b=2, h=(b-a)/n =3/n

By defination `int_(-1)^2(e^3x+7x-5)dx=lim_(n->oo)sum_(r=a)1^nh.f(a+rh)`

`lim_(n->oo)sum_(r=a)1^nh.f(-1+rh)=lim_(n->oo)sum_(r=a)1^nh.(e^3(-1+rh)+7(-1+rh)-5)`

`=lim_(n->oo)[h.e^(-3).e^(3h)(1+e^(3h)+3^(6h)+.....+e^(3nh))+7h^2(1+2+3+....+n)-12nh]`

`=lim_(n->oo)[(he^(3h))/(n.e^3)xx(e^(3nh)-1)/(e^(3h)-1)+7h^2(n(n+1))/2-12nh]`

`=lim_(n->oo)[((3e^(3xx3/n))/(n.e^3)xx(e^(3nxx3/n)-1)xx((3h)/(e^(3h)-1))xxn/(3xx3))+63/n^2xx(n(n+1))/2-12xx3]`

Now applying the limit we get

`=(e^9-1)/(3e^3)+63/2-36`

`=(e^9-1)/(3e^3)  - 9/2`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Panchkula Set 1

RELATED QUESTIONS

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×