Advertisements
Advertisements
Question
Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`
Solution
`Let I=∫_0^(π/2)(sin^2x)sinx+cosxdx`
`=>I=int_0^(pi/2)(sin^2(pi/2-x))/(sin(pi/2-x)+cos(pi/2-x)) dx [Using :∫_0^a f(x)dx=∫_0^a f(a−x)dx]`
`=>I int_0^(pi/2) cos^2x/(cosx+sinx)dx ..(ii)`
Adding (i) and (ii), we get
`2I=∫_0^(pi/2) (sin^2x)/(sinx+cosx)+cos^2x/(sinx+cosx)dx=∫0_^(pi/2)1/(sinx+cosx)dx`
`2I=int_0^(pi/2) 1/((2 tan (x/2))/(1+tan^2(x/2))+(1-tan^2(x/2))/(1+tan^2(x/2)))dx`
`=>2I=int_0^(pi/2)(1+tan^2(x/2))/(2tan(x/2)+1-tan^2(x/2))dx`
`=>2I=int_0^(pi/2)(sec^2(x/2))/(2 tan(x/2)+1-tan^2(x/2))dx`
`Let tan(x/2)=t. Then, d (tan(x/2))=dt⇒sec^2(x/2)⋅1/2dx=dt⇒sec^2 (x/2)dx=2 dt`
`Also x=0⇒t=tan 0=0 and x=(π/2)⇒t=tan(π/4)=1`
`∴ 2I=∫_0^1 (2dt)/(2t+1−t^2)=2∫_0^1 1/((sqrt2)^2−(t−1)^2)dt`
`=> 2I=2 xx1/(2sqrt2)[log|(sqrt2+t-1)/(sqrt2-t+1)|]_0^1`
`=>2I=1/sqrt2 {log(sqrt2/sqrt2)-log((sqrt2-1)/(sqrt2+1))}=1/sqrt2 {0-log((sqrt2-1)/(sqrt2+1))}`
`=>2I=-1/sqrt2 log {(sqrt2-1)^2/((sqrt2+1)(sqrt2-1))}=-1/sqrt2 log(sqrt2 -1)^2=-2/sqrt2 log (sqrt2-1)`
`=>I=-1/sqrt2 log (sqrt2-1)`
RELATED QUESTIONS
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_2^3 1/x dx`
Evaluate the definite integral:
`int_1^2 (4x^3 - 5x^2 + 6x + 9) dx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_0^(pi/4) tan x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_0^1 dx/sqrt(1-x^2)`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_0^(pi/2) cos^2 xdx`
Evaluate the definite integral:
`int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integral:
`int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
Evaluate the definite integral:
`int_1^2 (5x^2)/(x^2 + 4x + 3)`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_1^(sqrt3)dx/(1+x^2) ` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_6^(2/3) (dx)/(4 + 9x^2)` equals