Advertisements
Advertisements
Question
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
Solution
Let `I = int_0^2 (6x + 3)/(x^2 + 4) dx`
`= int_0^2 (6x) /(x^2 + 4) dx + int_0^2 3/ (x^2 + 4) dx`
`= 3 int_0^2 (2x)/(x^2 + 4) dx + [3 xx 1/2 tan^-1 x/2]_0^2`
Let `I_1 = 3 int_0^2 (2x)/ (x^2 + 4) dx`
Put x2 + 4 = t
⇒ 2x dx = dt
When x = 0
⇒ t = 4
When x = 2
⇒ t = 8
`= 3 int_4^8 dt/t = [3 log t]_4^8`
= 3 (log 8 - log 4)
= 3 log 2
⇒ `I = 3 log 2 + 3/2 [tan^-1 1 tan^-1 0]`
`= 3 log 2 + 3/2 xx pi/4 = 3 log 2 + (3pi)/8`
APPEARS IN
RELATED QUESTIONS
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`
Evaluate the definite integral:
`int_2^3 1/x dx`
Evaluate the definite integral:
`int_1^2 (4x^3 - 5x^2 + 6x + 9) dx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_0^(pi/4) tan x dx`
Evaluate the definite integral:
`int_0^1 dx/sqrt(1-x^2)`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integral:
`int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_1^(sqrt3)dx/(1+x^2) ` equals:
`int_0^(2/3) dx/(4+9x^2)` equals:
`int_1^sqrt(3) (dx)/(1 + x^2)` equals
`int_6^(2/3) (dx)/(4 + 9x^2)` equals
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`