Advertisements
Advertisements
Question
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`
Solution
I = `int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`
= `int_(-2π)^(2π) (sin^4(-x) + cos^4(-x))/(1 + e^-x)dx` ...`[∵ int_a^b f(x)dx = int_a^b f(a + b - x)dx]`
= `int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^-x)dx`
= `int_(-2π)^(2π) (e^x(sin^4x + cos^4x))/(1 + e^x)dx`
I + I = `int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx + int_(-2π)^(2π) (e^x(sin^4x + cos^4x))/(1 + e^x)dx`
∴ 2I = `int_(-2π)^(2π) (sin^4x + cos^4x)dx`
= `2int_0^(2π) (sin^4x + cos^4x)dx` ...`[∵ int_-a^a f(x)dx = 2int_0^a f(x)dx "if" f(-x) = f(x)]`
∴ I = `int_0^(2π) (sin^4x + cos^4x)dx`
= `2int_0^π (sin^4x + cos^4x)dx` ...`[∵ int_0^(2a) f(x)dx = 2int_0^af(x)dx "if" f(2a - x) = f(x)]`
= `2*(3π)/4`
= `(3π)/2`
APPEARS IN
RELATED QUESTIONS
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`
Evaluate :`int_0^(pi/2)(2^(sinx))/(2^(sinx)+2^(cosx))dx`
Evaluate the definite integral:
`int_2^3 1/x dx`
Evaluate the definite integral:
`int_0^(pi/4) sin2xdx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_2^3 dx/(x^2 - 1)`
Evaluate the definite integral:
`int_0^(pi/2) cos^2 xdx`
Evaluate the definite integral:
`int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integral:
`int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integral:
`int_1^2 (5x^2)/(x^2 + 4x + 3)`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_1^(sqrt3)dx/(1+x^2) ` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_1^sqrt(3) (dx)/(1 + x^2)` equals
Evaluate:
`int_0^π(sin^4x + cos^4x)dx`