English

Evaluate the definite integral: ∫0π2cos2xdx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the definite integral:

`int_0^(pi/2) cos^2 xdx`

Evaluate

Solution

`int_0^(pi/2)  cos^2  x  dx`    ...(i)

= `1/2 int_0^(pi/2) (1 + cos 2x) dx`

`because cos 2x = 1 - 2 cos^2 x`

`=> cos^2 x = 1/2 (1 + cos 2x)`

= `1/2 [x + (sin 2x)/2]_0^(pi/2)`

= `1/2 [pi/2 - (sin pi)/2 - 0 - 1/2 sin 0]`

= `1/2 [pi/2 + 0 - 0]`

= `pi/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.9 [Page 338]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.9 | Q 12 | Page 338

RELATED QUESTIONS

If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.


 
 

Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`

 
 

 

Evaluate :`int_0^(pi/2)(2^(sinx))/(2^(sinx)+2^(cosx))dx`

 

Evaluate the definite integral:

`int_(-1)^1 (x + 1)dx`


Evaluate the definite integral:

`int_2^3 1/x dx`


Evaluate the definite integral:

`int_1^2 (4x^3 - 5x^2 + 6x + 9)  dx`


Evaluate the definite integral:

`int_0^(pi/4) sin2xdx`


Evaluate the definite integral:

`int_0^(pi/2) cos 2x  dx`


Evaluate the definite integral:

`int_4^5 e^x dx`


Evaluate the definite integral:

`int_0^(pi/4) tan x dx`


Evaluate the definite integral:

`int_(pi/6)^(pi/4) cosec x  dx`


Evaluate the definite integral:

`int_0^1 dx/sqrt(1-x^2)`


Evaluate the definite integral:

`int_0^1 dx/(1+x^2)`


Evaluate the definite integral:

`int_2^3 dx/(x^2 - 1)`


Evaluate the definite integral:

`int_2^3 (xdx)/(x^2 + 1)`


Evaluate the definite integral:

`int_0^1 (2x + 3)/(5x^2 + 1) dx`


Evaluate the definite integral:

`int_0^1 x e^(x^2) dx`


Evaluate the definite integral:

`int_0^(pi/4) (2 sec^2 x + x^3  + 2) dx`


Evaluate the definite integral:

`int_0^pi (sin^2  x/2 - cos^2  x/2) dx`


Evaluate the definite integral:

`int_0^2 (6x +3)/(x^2 + 4)` dx


Evaluate the definite integral:

`int_0^1 (xe^x + sin  (pix)/4)`


`int_1^(sqrt3)dx/(1+x^2) ` equals:


`int_0^(2/3) dx/(4+9x^2)` equals:


Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .


`int_1^sqrt(3) (dx)/(1 + x^2)` equals


`int_6^(2/3) (dx)/(4 + 9x^2)` equals


Evaluate:

`int_0^π(sin^4x + cos^4x)dx`


Hence evaluate:

`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×