Advertisements
Advertisements
Question
Evaluate the definite integral:
`int_0^(pi/4) sin2xdx`
Solution
Let `I = int_0^(pi/4) sin 2x dx`
`= (-1)/2 [cos 2x]_0^(pi/4)`
`= (-1)/2 (cos pi/2 - cos 0)`
`= 1/2`
APPEARS IN
RELATED QUESTIONS
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_2^3 1/x dx`
Evaluate the definite integral:
`int_1^2 (4x^3 - 5x^2 + 6x + 9) dx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_2^3 dx/(x^2 - 1)`
Evaluate the definite integral:
`int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integral:
`int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
Evaluate the definite integral:
`int_1^2 (5x^2)/(x^2 + 4x + 3)`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_0^(2/3) dx/(4+9x^2)` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_1^sqrt(3) (dx)/(1 + x^2)` equals
Evaluate:
`int_0^π(sin^4x + cos^4x)dx`
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`