Advertisements
Advertisements
Question
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Solution
`y+x dy/dx=x−y dy/dx`
`x dy/dx + y dy/dx=x−y`
`⇒dy/dx=(x−y)/(x+y) ` ......(1)
`Let F(x, y) =(x−y)/(x+y)`
`F(λx, λy) = λF(x, y)`
Therefore, F(x, y) is a homogeneous function of degree zero.
Let `y=vx`
`dy/dx=v+x (dv)/dx`
Substituting the value of y and dy/dx in (1) we get,
`v + x (dv)/dx=(x−vx)/(x+vx)=(1−v)/(1+v)`
`x (dv)/dx=(1−v)/(1+v)−v=(1−v−v^2−v)/(1+v)=(1−2v−v^2)/(1+v)`
`(1+v)/(v^2+2v−1)dv=−dx/x`
Integrating both sides, we have
`1/2 log∣(y^2/x^2)+(2y)/x−1∣+log|x|=logc`
`⇒log∣(y^2/x^2)+(2y)/x−1∣+2log|x|=2logc`
`⇒log((y^2/x^2)+(2y)/x−1)(x^2)=logc^2`
`⇒((y^2+2yx−x^2)/x^2)(x^2) = c^2`
`⇒y^2+2yx−x^2=C (where C=c^2)`
APPEARS IN
RELATED QUESTIONS
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)