English

( X − Y ) D Y D X = X + 2 Y - Mathematics

Advertisements
Advertisements

Question

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

Solution

\[\left( x - y \right) \frac{dy}{dx} = x + 2y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y}\]
This is a homogeneous differential equatiuon .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + 2v}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v + v^2}{1 - v}\]
\[ \Rightarrow \frac{1 - v}{1 + v + v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{1 - v}{1 + v + v^2}dv = \int\frac{1}{x}dx\]
\[\Rightarrow \int\frac{- (v - 1)}{v^2 + v + 1}dv = \frac{dx}{x}\]
\[ \Rightarrow \int\frac{1}{2} \times \frac{2v - 2}{v^2 + v + 1}dv = \int\frac{- dx}{x}\]
\[ \Rightarrow \int\frac{(2v + 1) - 3}{v^2 + v + 1}dv = - \int\frac{2dx}{x}\]
\[ \Rightarrow \int\frac{(2v + 1)}{v^2 + v + 1}dv - \int\frac{3}{v^2 + v + 1}dv = - \int\frac{2dx}{x}\]
\[\text{ Let }I_1 = \int\frac{(2v + 1)}{v^2 + v + 1}dv\]
\[\text{ and }I_2 = \int\frac{3}{v^2 + v + 1}dv\]
\[I = I_1 + I_2 \]
\[I_1 = \int \frac{2v + 1}{v^2 + v + 1}dv\]
\[\text{ let }v^2 + v + 1 = t \Rightarrow (2 v^2 + 1)dv = dt\]
\[\text{ therefore, }I_1 = \int \frac{2v + 1}{v^2 + v + 1}dv = \int\frac{dt}{t} = \log\left| t \right| = \log\left| v^2 + v + 1 \right|\]
\[\text{ hence, } I_1 = log\left| v^2 + v + 1 \right|\]
\[\text{ Also }, I_2 = \int\frac{3}{v^2 + v + 1}dv = \int\frac{3}{v^2 + 2v\left( \frac{1}{2} \right) + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \int\frac{3}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv = 3\left( \frac{2}{\sqrt{3}} \right) \tan^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) = 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)\]
\[ I_2 = 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)\]
\[\text{ Hence, }I = I_1 + I_2 = log\left| v^2 + v + 1 \right| + 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)\]
\[\text{ therefore, }log\left| v^2 + v + 1 \right| + 2\sqrt{3} ta n^{- 1} \left( \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) = - 2\log\left| x \right| + C\]
putting the value of v in the above equation we get, 
\[log\left| x^2 + y^2 + xy \right| = 2\sqrt{3} ta n^{- 1} \left( \frac{x + 2y}{x\sqrt{3}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 32 | Page 83

RELATED QUESTIONS

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Which of the following is a homogeneous differential equation?


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Which of the following is a homogeneous differential equation?


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×