English

Solve : dydxx2dydx = x2 + xy + y2. - Mathematics

Advertisements
Advertisements

Question

Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.

Sum

Solution

Given equation is `x^2 "dy"/"dx"` = x2 + xy + y2 

⇒ `"dy"/"dx" = (x^2 + xy + y^2)/x^2`

Put y = vx  ......[∵ it is a homogeneous differential equation]

∴ `"dy"/"dx" = "v" + x * "dv"/"dx"`

∴ `"v" + x * "dv"/"dx" = (x^2 + "v"x^2 + "v"^2x^2)/x^2`

⇒ `"v" + x * "dv"/"dx" = (x^2(1 + "v" + v"^2))/x^2` 

⇒ `"v" + x * "dv"/"dx" = 1 + "v" + "v"^2`

⇒ `x * "dv"/"dx" = 1 + "v" + "v"^2 -  "v"`

⇒ `x * "dv"/"dx" = 1 + "v"^2`

⇒ `"dv"/(1 + "v"^2) = "dx"/x`

Integrating both sides, we get

`int "dv"/(1 + "v"^2) = int "dx"/x`

⇒ tan–1v = log x + c

⇒ `tan^-1 (y/x)` = log x + c

Hence, the required solution is `tan^-1 (y/x)` = log |x| + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 194]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 16 | Page 194

RELATED QUESTIONS

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Which of the following is a homogeneous differential equation?


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×