Advertisements
Advertisements
Question
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Solution
Given equation is `x^2 "dy"/"dx"` = x2 + xy + y2
⇒ `"dy"/"dx" = (x^2 + xy + y^2)/x^2`
Put y = vx ......[∵ it is a homogeneous differential equation]
∴ `"dy"/"dx" = "v" + x * "dv"/"dx"`
∴ `"v" + x * "dv"/"dx" = (x^2 + "v"x^2 + "v"^2x^2)/x^2`
⇒ `"v" + x * "dv"/"dx" = (x^2(1 + "v" + v"^2))/x^2`
⇒ `"v" + x * "dv"/"dx" = 1 + "v" + "v"^2`
⇒ `x * "dv"/"dx" = 1 + "v" + "v"^2 - "v"`
⇒ `x * "dv"/"dx" = 1 + "v"^2`
⇒ `"dv"/(1 + "v"^2) = "dx"/x`
Integrating both sides, we get
`int "dv"/(1 + "v"^2) = int "dx"/x`
⇒ tan–1v = log x + c
⇒ `tan^-1 (y/x)` = log x + c
Hence, the required solution is `tan^-1 (y/x)` = log |x| + c.
APPEARS IN
RELATED QUESTIONS
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
(x2 + 3xy + y2) dx − x2 dy = 0
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Which of the following is a homogeneous differential equation?
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)