English

Solve the Following Initial Value Problem: X E Y / X − Y + X D Y D X = 0 , Y ( E ) = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]

Sum

Solution

\[x e^\frac{y}{x} - y + x\frac{dy}{dx} = 0 y\left( e \right) = 0\]
This is also a homogenous equation,
Put y = vx
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[x e^v - vx + x\left( v + x\frac{dv}{dx} \right) = 0\]
\[x e^v - vx + xv + x^2 \frac{dv}{dx} = 0\]
\[x e^v + x^2 \frac{dv}{dx} = 0\]
\[ e^v = - x\frac{dv}{dx}\]
\[\frac{dx}{x} = - \frac{1}{e^v}dv\]
On integration both sides we get,
\[\int\frac{dx}{x} = - \int\frac{1}{e^v}dv\]
\[ \log_e x = - \int e^{- v} dv\]
\[ \Rightarrow \log_e x = e^{- \frac{y}{x}} + c ............\left( \because y = vx \right)\]
\[\text{ As given }y\left( e \right) = 0\]
\[ \log_e e = e^{- \frac{0}{e}} + c\]
\[1 = 1 + c\]
\[ \Rightarrow c = 0\]
\[ \therefore \log_e x = e^{- \frac{y}{x}}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 36.2 | Page 84

RELATED QUESTIONS

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Which of the following is a homogeneous differential equation?


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×