Advertisements
Advertisements
Question
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solution
(x2 + y2)dx = 2xy dy, y(1) = 0
We have,
(x2 + y2) dx = 2xy .....(i)
This is a homogenous equation, so let us take y = vx
\[\text{ Then, }\frac{dy}{dx} = v + x\frac{dv}{dx}\]
Putting y = vx in equation (i)
\[\left( x^2 + v^2 x^2 \right) = 2v x^2 \left( v + x\frac{dv}{dx} \right)\]
\[ x^2 \left( 1 + v^2 \right) = 2v x^2 \left( v + x\frac{dv}{dx} \right)\]
\[\left( 1 + v^2 \right) = 2 v^2 + 2vx\frac{dv}{dx}\]
\[1 - v^2 = 2vx\frac{dv}{dx}\]
\[\frac{dx}{x} = \frac{2v dv}{1 - v^2}\]
On integrating both sides, we get
\[\int\frac{1}{x}dx = \int\frac{2v}{1 - v^2}dv\]
\[\text{ Let, }\left( 1 - v^2 \right) = t\]
\[ \Rightarrow - 2v dv = dt\]
\[ \log_e x = - \int\frac{dt}{t} \]
\[ \log_e x = - \log_e t + c\]
\[ \log_e x = - \log_e \left( 1 - \frac{y^2}{x^2} \right) + c\]
\[ \log_e \left[ x\left( \frac{x^2 - y^2}{x^2} \right) \right] = c\]
\[ \log_e \left( \frac{x^2 - y^2}{x} \right) = c\]
\[\text{ As }y\left( 1 \right) = 0\]
\[ \Rightarrow c = 0\]
\[ \therefore \log_e \left( \frac{x^2 - y^2}{x} \right) = 0\]
\[ \Rightarrow \frac{x^2 - y^2}{x} = 1\]
\[ \Rightarrow x^2 - y^2 = x\]
APPEARS IN
RELATED QUESTIONS
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)