Advertisements
Advertisements
Question
Solution
We have,
\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{8 x^2 - 3xy + 2 y^2}{x^2 + y^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get}\]
\[v + x\frac{dv}{dx} = \frac{8 x^2 - 3v x^2 + 2 v^2 x^2}{x^2 + v^2 x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{8 - 3v + 2 v^2}{1 + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{8 - 4v + 2 v^2 - v^3}{1 + v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{4\left( 2 - v \right) + v^2 \left( 2 - v \right)}{1 + v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{\left( 4 + v^2 \right)\left( 2 - v \right)}{1 + v^2}\]
\[ \Rightarrow \frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)}dv = \int\frac{1}{x}dx . . . . . (1)\]
Let us consider the left hand side of (1) .
Using partial fraction,
\[\text{ Let }\frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)} = \frac{Av + B}{4 + v^2} + \frac{C}{2 - v}\]
\[ \Rightarrow 1 + v^2 = Av\left( 2 - v \right) + B\left( 2 - v \right) + C \left( 4 + v^2 \right)\]
\[ \Rightarrow 1 + v^2 = 2Av - A v^2 + 2B - Bv + 4C + C v^2 \]
Comparing the coefficients of both sides, we get
\[2A - B = 0 \]
\[ - A + C = 1 \]
& \[ 2B + 4C = 1\]
Solving these three equations, we get
\[A = \frac{- 3}{8}, B = \frac{- 3}{4}\text{ and }C = \frac{5}{8} \]
\[ \therefore \frac{1 + v^2}{\left( 4 + v^2 \right)\left( 2 - v \right)} = \frac{- \frac{3}{8}v - \frac{3}{4}}{4 + v^2} + \frac{\frac{5}{8}}{2 - v} . . . . . (2)\]
From (1) and (2), we get
\[\int\frac{- \frac{3}{8}v - \frac{3}{4}}{4 + v^2} + \frac{\frac{5}{8}}{2 - v} = \int\frac{1}{x}dx \]
\[ \Rightarrow - \frac{3}{8}\int\frac{v}{v^2 + 4}dv - \frac{3}{4}\int\frac{1}{v^2 + 4}dv + \frac{5}{8}\int\frac{1}{2 - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{- 3}{16}\log \left| v^2 + 4 \right| - \frac{3}{4 \times 2}\tan {}^{- 1} \frac{v}{2} - \frac{5}{8}\log \left| 2 - v \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow - \frac{3}{4 \times 2}\tan {}^{- 1} \frac{v}{2} = \log \left| Cx \left( 2 - v \right)^\frac{5}{8} \left( v^2 + 4 \right)^\frac{3}{16} \right|\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{v}{2}} = C\left| x \left( 2 - v \right)^\frac{5}{8} \left( v^2 + 4 \right)^\frac{3}{16} \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C\left| x \left( 2 - \frac{y}{x} \right)^\frac{5}{8} \left( \frac{y}{x^2}^2 + 4 \right)^\frac{3}{16} \right|\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C\left| x \times \frac{1}{x} \left( 2x - y \right)^\frac{5}{8} \left( y^2 + 4 x^2 \right)^\frac{3}{16} \right|\]
\[ \Rightarrow e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C \left| 2x - y \right|^\frac{5}{8} \left( y^2 + 4 x^2 \right)^\frac{3}{16} \]
\[\text{ Hence, }e^{- \frac{3}{8}\tan {}^{- 1} \frac{y}{2x}} = C \left| 2x - y \right|^\frac{5}{8} \left( y^2 + 4 x^2 \right)^\frac{3}{16}\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.