Advertisements
Advertisements
Question
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Solution
\[{x \sin^2 \left( \frac{y}{x} \right) - y}dx + x dy = 0, y(1) = \frac{\pi}{4}\]
it is a homogeneous equation . so, we put y = vx
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ so,} v + x\frac{dv}{dx} = - \sin^2 \left( \frac{vx}{x} \right) + \frac{vx}{x}\]
\[x\frac{dv}{dx} = - si n^2 v\]
\[\frac{dv}{\sin^2 v} = - \frac{dx}{x}\]
integrating both sides, we get
\[cot\left( \frac{y}{x} \right) = \log\left| cx \right|\]
\[\text{ putting the values of }x = 1\text{ and }y = \frac{\pi}{4}\]
\[cot\left( \frac{\pi}{4} \right) = \log c\]
\[1 = \log c\]
\[c = e\]
\[\text{ Hence, }cot\left( \frac{y}{x} \right) = \log(ex)\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
(x2 + 3xy + y2) dx − x2 dy = 0
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Which of the following is a homogeneous differential equation?
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)