Advertisements
Advertisements
Question
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
Solution
`y dx + x log (y/x) dy - 2x dy = 0`
⇒ `y/x + log (y/x) dy/dx - 2 dy/dx = 0`
⇒ `dy/dx = (y/x)/(2 - log (y/x))` .....(1)
Since R.H.S. is of the form `g(y/x)`, it is a homogeneous function of degree zero.
Therefore equation (1) is a homogeneous differential equation.
To solve this, put y = vx
⇒ `dy/dx = v + x (dv)/dx,` then (1) becomes
`v + x (dv)/dx = v/ (2 - log v)`
⇒ `x (dv)/dx = v/ (2 - log v) - v`
⇒ `((2 - log v)dv)/(v log v - v) = dx/x`
⇒ `(1 - (log v - 1))/(v (log v - 1)) dv = dx/x` .....(2)
Integrating (2) both sides, we get
`int (1/ (v (logv - 1)) - 1/v) dv`
`= int dx/x + C_1`
⇒ `int (1/v)/(log v - 1) dv - int 1/v dv = int dx /x + C_1`
⇒ `log |log v - 1| - log |v|`
= log |x| + C1
⇒ `log |(log v - 1)/(v x)| = C_1`
⇒ `|(log v - 1)/ (v x)| = e^(C_(1))`
⇒ `(log v - 1)/(v x) = pm e^(C_(1)) = C` (say)
⇒ `log (y/x) - 1 = Cy` ...`(∵ v = y/x)`
which is the required general solution.
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Which of the following is a homogeneous differential equation?
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)