English

Solve the Following Differential Equation : [ Y − X Cos ( Y X ) ] D Y + [ Y Cos ( Y X ) − 2 X Sin ( Y X ) ] D X = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .

Solution

The given differential equation is

\[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\].

\[\therefore \frac{d y}{d x} = \frac{2x\sin\left( \frac{y}{x} \right) - y\cos\left( \frac{y}{x} \right)}{y - x\cos\left( \frac{y}{x} \right)}\]

This is a homogeneous differential equation.
Putting y = vx and \[\frac{d y}{d x} = v + x\frac{d v}{d x}\] it reduces to

\[v + x\frac{d v}{d x} = \frac{2x\sin v - vx\cos v}{vx - x\cos v}\]

\[ \Rightarrow v + x\frac{d v}{d x} = \frac{2\sin v - v\cos v}{v - \cos v}\]

\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v\cos v}{v - \cos v} - v\]

\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v\cos v - v^2 + v\cos v}{v - \cos v}\]

\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v^2}{v - \cos v}\]

\[ \Rightarrow \left( \frac{v - \cos v}{2\sin v - v^2} \right)dv = \frac{dx}{x}\]

\[ \Rightarrow \frac{- 1}{2}\left( \frac{2\cos v - 2v}{2\sin v - v^2} \right)dv = \frac{dx}{x}\]

Integrating on both sides, we get

\[- \frac{1}{2}\int\frac{2\cos v - 2v}{2\sin v - v^2}dv = \int\frac{dx}{x}\]

\[ \Rightarrow - \frac{1}{2}\log\left( 2\sin v - v^2 \right) = \log x + \log C \left( \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log x + C \right)\]

\[\text { where} \]

\[C =\text { Constant of integration } \]

\[\Rightarrow - \frac{1}{2}\log\left( 2\sin v - v^2 \right) = \log x + \log C\]

\[ \Rightarrow \log\left( \frac{1}{2\sin v - v^2} \right) = 2\log Cx\]

\[ \Rightarrow \frac{1}{2\sin v - v^2} = C^2 x^2 \]

\[ \Rightarrow x^2 \left[ 2\sin\left( \frac{y}{x} \right) - \frac{y^2}{x^2} \right] = \frac{1}{C^2} = k\]

\[ \Rightarrow 2 x^2 \sin\left( \frac{y}{x} \right) - y^2 = k\]

This is the solution of the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 2

RELATED QUESTIONS

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×