Advertisements
Advertisements
प्रश्न
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
उत्तर
The given differential equation is
\[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\].
\[\therefore \frac{d y}{d x} = \frac{2x\sin\left( \frac{y}{x} \right) - y\cos\left( \frac{y}{x} \right)}{y - x\cos\left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation.
Putting y = vx and \[\frac{d y}{d x} = v + x\frac{d v}{d x}\] it reduces to
\[v + x\frac{d v}{d x} = \frac{2x\sin v - vx\cos v}{vx - x\cos v}\]
\[ \Rightarrow v + x\frac{d v}{d x} = \frac{2\sin v - v\cos v}{v - \cos v}\]
\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v\cos v}{v - \cos v} - v\]
\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v\cos v - v^2 + v\cos v}{v - \cos v}\]
\[ \Rightarrow x\frac{d v}{d x} = \frac{2\sin v - v^2}{v - \cos v}\]
\[ \Rightarrow \left( \frac{v - \cos v}{2\sin v - v^2} \right)dv = \frac{dx}{x}\]
\[ \Rightarrow \frac{- 1}{2}\left( \frac{2\cos v - 2v}{2\sin v - v^2} \right)dv = \frac{dx}{x}\]
Integrating on both sides, we get
\[- \frac{1}{2}\int\frac{2\cos v - 2v}{2\sin v - v^2}dv = \int\frac{dx}{x}\]
\[ \Rightarrow - \frac{1}{2}\log\left( 2\sin v - v^2 \right) = \log x + \log C \left( \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log x + C \right)\]
\[\text { where} \]
\[C =\text { Constant of integration } \]
\[\Rightarrow - \frac{1}{2}\log\left( 2\sin v - v^2 \right) = \log x + \log C\]
\[ \Rightarrow \log\left( \frac{1}{2\sin v - v^2} \right) = 2\log Cx\]
\[ \Rightarrow \frac{1}{2\sin v - v^2} = C^2 x^2 \]
\[ \Rightarrow x^2 \left[ 2\sin\left( \frac{y}{x} \right) - \frac{y^2}{x^2} \right] = \frac{1}{C^2} = k\]
\[ \Rightarrow 2 x^2 \sin\left( \frac{y}{x} \right) - y^2 = k\]
This is the solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Which of the following is a homogeneous differential equation?
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.