मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following differential equation: (9x + 5y) dy + (15x + 11y)dx = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0

बेरीज

उत्तर

(9x + 5y) dy + (15x + 11y)dx = 0

∴ (9x + 5y) dy = - (15x + 11y) dx

∴ `"dy"/"dx" = (- (15"x" + 11"y"))/(9"x" + 5"y")`  ...(1)

Put y = vx

∴ `"dy"/"dx" = "v + x" "dv"/"dx"`

∴ (1) becomes, `"v + x" "dv"/"dx" = (- (15"x" + 11"y"))/(9"x" + 5"y")` 

∴ `"v + x" "dv"/"dx" = (- (15 + 11"v"))/(9 + 5"v")`

∴ `"v + x" "dv"/"dx" = (- (15 + 11"v"))/(9 + 5"v") - "v" = (- 15 - 11"v" - 9"v" - 5"v"^2)/(9 + "5v")`

∴ `"x" "dv"/"dx" = (- 5"v"^2 - 20"v" - 15)/(9 + "5v") = - ((5"v"^2 + 20"v" + 15)/(5"v" + 9))`

∴ `("5v + 9")/("5v"^2 + 20"v" + 15) "dv" = - 1/"x" "dx"`     ....(2)

Integrating, we get

`1/5 int ("5v" + 9)/("v"^2 + 4"v" + 3) "dv" = - int 1/"x" "dx"`

Let `("5v" + 9)/("v"^2 + 4"v" + 3) = ("5v" + 9)/(("v" + 3)("v" + 1)) = "A"/("v + 3") + "B"/("v + 1")`

∴ 5v + 9 = A(v + 1) + B(v + 3)

Put v + 3 = 0, i.e. v = - 3, we gwr

- 15 + 9 = A(- 2) + B(0)

∴ - 6 = - 2A

∴ A = 3

Put v + 1 = 0, i.e. v = - 1, we get

- 5 + 9 = A(0) + B(2)

∴ 4 = 2B

∴ B = 2

∴ `("5v" + 9)/("v"^2 + 4"v" + 3) = 3/("v + 3") + 2/("v + 1")`

∴ (2) becomes,

`1/5 int (3/("v + 3") + 2/("v + 1"))"dv" = - int 1/"x" "dx"`

∴ `3/5 int 1/("v + 3")"dv" + 2/5 int1/("v + 1") "dv" = - int 1/"x" "dx"`

∴ `3/5 log |"v + 3"| + 2/5 log |"v + 1"| = - log |"x"| + "c"_`

∴ 3 log |v + 3| + 2 log |v + 1| = - 5 log x + 5c1

∴ `log |("v + 3")^3| + log |("v" + 1)^2| = - log |"x"^5| + log "c",` where 5c1 = log c

∴ `log |("v + 3")^3 ("v + 1")^2| = log |"c"/"x"^5|`

∴ `("v + 3")^3 ("v + 1")^2 = "c"/"x"^5`

∴ `("y"/"x" + 3)^3 ("y"/"x" + 1)^2 = "c"/"x"^5`

∴ `("x + y")^2 (3"x" + "y")^3 = "c"`

This is the general solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.4 [पृष्ठ २०३]

APPEARS IN

संबंधित प्रश्‍न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

(x2 + 3xy + y2) dx − x2 dy = 0


\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Which of the following is a homogeneous differential equation?


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×