Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
उत्तर
This is also a homogenous equation,
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[x e^v - vx + x\left( v + x\frac{dv}{dx} \right) = 0\]
\[x e^v - vx + xv + x^2 \frac{dv}{dx} = 0\]
\[x e^v + x^2 \frac{dv}{dx} = 0\]
\[ e^v = - x\frac{dv}{dx}\]
\[\frac{dx}{x} = - \frac{1}{e^v}dv\]
On integration both sides we get,
\[\int\frac{dx}{x} = - \int\frac{1}{e^v}dv\]
\[ \log_e x = - \int e^{- v} dv\]
\[ \Rightarrow \log_e x = e^{- \frac{y}{x}} + c ............\left( \because y = vx \right)\]
\[\text{ As given }y\left( e \right) = 0\]
\[ \log_e e = e^{- \frac{0}{e}} + c\]
\[1 = 1 + c\]
\[ \Rightarrow c = 0\]
\[ \therefore \log_e x = e^{- \frac{y}{x}}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Which of the following is a homogeneous differential equation?
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)