मराठी

X Cos ( Y X ) ⋅ ( Y D X + X D Y ) = Y Sin ( Y X ) ⋅ ( X D Y − Y D X ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]
बेरीज

उत्तर

We have, 
\[x \cos\left( \frac{y}{x} \right)\left( y dx + x dy \right) = y \sin \left( \frac{y}{x} \right)\left( x dy - y dx \right)\]
\[ \Rightarrow xy \cos \left( \frac{y}{x} \right) dx + x^2 \cos \left( \frac{y}{x} \right) dy = xy \sin \left( \frac{y}{x} \right) dy - y^2 \sin \left( \frac{y}{x} \right) dx\]
\[ \Rightarrow \left[ xy \cos \left( \frac{y}{x} \right) + y^2 \sin \left( \frac{y}{x} \right) \right] dx = \left[ xy \sin \left( \frac{y}{x} \right) - x^2 \cos \left( \frac{y}{x} \right) \right] dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{xy \cos \left( \frac{y}{x} \right) + y^2 \sin \left( \frac{y}{x} \right)}{xy \sin \left( \frac{y}{x} \right) - x^2 \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v x^2 \cos v + v^2 x^2 \sin v}{v x^2 \sin v - x^2 \cos v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v - v^2 \sin v + v \cos v}{v \sin v - \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2v \cos v}{v \sin v - \cos v}\]
\[ \Rightarrow \frac{v\sin v - \cos v}{2 v \cos v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v\sin v - \cos v}{2 v \cos v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v\sin v - \cos v}{v \cos v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v \sin v}{v \cos v}dv - \int\frac{\cos v}{v \cos v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \int\tan v dv - \int\frac{1}{v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \sec v \right| - \log \left| v \right| = 2 \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{\sec v}{v} \right| = \log \left| C x^2 \right|\]
\[ \Rightarrow \frac{\sec v}{v} = C x^2 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\sec \left( \frac{y}{x} \right) = \frac{y}{x} \times C \times x^2 \]
\[ \Rightarrow \sec \left( \frac{y}{x} \right) = Cxy\]
\[\text{Hence, }\sec \left( \frac{y}{x} \right) = Cxy\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 30 | पृष्ठ ८३

संबंधित प्रश्‍न

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]

 


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Which of the following is a homogeneous differential equation?


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×