Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[x \cos\left( \frac{y}{x} \right)\left( y dx + x dy \right) = y \sin \left( \frac{y}{x} \right)\left( x dy - y dx \right)\]
\[ \Rightarrow xy \cos \left( \frac{y}{x} \right) dx + x^2 \cos \left( \frac{y}{x} \right) dy = xy \sin \left( \frac{y}{x} \right) dy - y^2 \sin \left( \frac{y}{x} \right) dx\]
\[ \Rightarrow \left[ xy \cos \left( \frac{y}{x} \right) + y^2 \sin \left( \frac{y}{x} \right) \right] dx = \left[ xy \sin \left( \frac{y}{x} \right) - x^2 \cos \left( \frac{y}{x} \right) \right] dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{xy \cos \left( \frac{y}{x} \right) + y^2 \sin \left( \frac{y}{x} \right)}{xy \sin \left( \frac{y}{x} \right) - x^2 \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v x^2 \cos v + v^2 x^2 \sin v}{v x^2 \sin v - x^2 \cos v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v - v^2 \sin v + v \cos v}{v \sin v - \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2v \cos v}{v \sin v - \cos v}\]
\[ \Rightarrow \frac{v\sin v - \cos v}{2 v \cos v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v\sin v - \cos v}{2 v \cos v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v\sin v - \cos v}{v \cos v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v \sin v}{v \cos v}dv - \int\frac{\cos v}{v \cos v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \int\tan v dv - \int\frac{1}{v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \sec v \right| - \log \left| v \right| = 2 \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{\sec v}{v} \right| = \log \left| C x^2 \right|\]
\[ \Rightarrow \frac{\sec v}{v} = C x^2 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\sec \left( \frac{y}{x} \right) = \frac{y}{x} \times C \times x^2 \]
\[ \Rightarrow \sec \left( \frac{y}{x} \right) = Cxy\]
\[\text{Hence, }\sec \left( \frac{y}{x} \right) = Cxy\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Which of the following is a homogeneous differential equation?
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)