Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
उत्तर
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
∴ `"dy"/"dx" = - (("x" - "2y")/("2x" - "y"))` ....(1)
Put y = vx
∴ `"dy"/"dx" = "v + x""du"/"dx"`
∴ (1) becomes, `"v + x" "du"/"dx" = - (("x" - "2vx")/("2x" - "vx"))`
∴ `"v + x""du"/"dx" = - ((1 - "2v")/(2 - "v"))`
∴ `"x" "dv"/"dx" = - ((1 - "2v")/(2 - "v")) - "v"`
∴ `"x" "dv"/"dx" = (- 1 + "2v" - 2"v" + "v"^2)/(2 - "v")`
∴ `"x" "dv"/"dx" = ("v"^2 - 1)/(2 - "v")`
∴ `(2 - "v")/("v"^2 - 1)"dv" = 1/"x" "dx"`
Integrating both sides, we get
`int (2 - "v")/("v"^2 - 1)"dv" = int 1/"x" "dx"`
∴ `2 int 1/("v"^2 - 1) "dv" - 1/2 int "2v"/("v"^2 - 1)"dv" = int 1/"x" "dx"`
∴ `2 xx 1/2 log |("v" - 1)/("v" + 1)| - 1/2 log |"v"^2 - 1| = log |"x"| + log "c"_1` .....`[because "d"/"dx" ("v"^2 - 1) = "2v" and int("f"'("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`
∴ `log |("v" - 1)/("v" + 1)| - log |("v"^2 - 1)^(1/2)| = log |"c"_1 "x"|`
∴ `log |("v" - 1)/("v" + 1) . 1/sqrt("v"^2 - 1)| = log |"c"_1 "x"|`
∴ `("v" - 1)/("v" + 1) . 1/sqrt("v"^2 - 1) = "c"_1 "x"`
∴ `("y"/"x" - 1)/("y"/"x" + 1) . 1/(sqrt("y"^2/"x"^2 - 1)) = "c"_1 "x"`
∴ `("y" - "x")/("y" + "x") . "x"/sqrt("y"^2 - "x"^2) = "c"_1"x"`
∴ `("y" - "x")/("y" + "x") = "c"_1 sqrt("y"^2 - "x"^2)`
∴ `("y" - "x")/("y" + "x") = "c"_1 sqrt(("y" - "x")("y" + "x")`
∴ `sqrt("y" - "x") = "c"_1 ("y" + "x")^(3/2)`
∴ y – x = `"c"_1^2 ("x + y")^3`
∴ y – x = c(x + y)3, where c = `"c"_1^2`
∴ y = c(x + y)3 + x
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 + 3xy + y2) dx − x2 dy = 0
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Which of the following is a homogeneous differential equation?
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx