मराठी

Solve the Following Initial Value Problem: (Y4 − 2x3 Y) Dx + (X4 − 2xy3) Dy = 0, Y (1) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1

बेरीज

उत्तर

(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
This is an homogenous equation, put y= vx
\[\left( v^4 x^4 - 2v x^4 \right) + \left( x^4 - 2 v^3 x^4 \right) \left[ v + x\frac{dv}{dx} \right] = 0\]
\[\left( v^4 x^4 - 2v x^4 \right) = \left( 2 v^3 x^4 - x^4 \right) \left[ v + x\frac{dv}{dx} \right]\]
\[v x^4 \left( v^3 - 2 \right) = x^4 \left( 2 v^3 - 1 \right) \left[ v + x\frac{dv}{dx} \right]\]
\[v\left( v^3 - 2 \right) = \left( 2 v^3 - 1 \right)v + x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left[ v^3 - 2 - 2 v^3 + 1 \right] = x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left( - 1 - v^3 \right) = x\left( 2 v^3 - 1 \right)\frac{dv}{dx}\]
\[v\left( 1 + v^3 \right) = x\left( 1 - 2 v^3 \right)\frac{dv}{dx}\]
\[\frac{dx}{x} = \frac{\left( 1 - 2 v^3 \right)}{v\left( 1 + v^3 \right)}dv\]
On integrating both side of the equation we get,
\[\int\frac{dx}{x} = \int\frac{\left( 1 - 2 v^3 \right)}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1 + v^3 - 3 v^3}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1 + v^3}{v\left( 1 + v^3 \right)}dv - \int\frac{3v}{v\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \int\frac{1}{v}dv - \int\frac{3 v^2}{\left( 1 + v^3 \right)}dv\]
\[ \Rightarrow \log_e x = \log_e v - \int\frac{dt}{t}\]
\[ \Rightarrow \log_e x = \log_e v - \log_e \left( 1 + v^3 \right) + c.......\text{ let }\left( 1 + v^3 \right) = t, 3 v^2 dv = dt\]
\[ \Rightarrow \log_e x = \log_e \frac{v}{1 + v^3} + c\]
As `v = y/x`
\[ \Rightarrow \log_e x = \log_e \frac{\frac{y}{x}}{1 + y^\frac{3}{x}} + c\]
\[ \Rightarrow \log_e x = \log_e \frac{y x^2}{x^3 + y^3} + c\]
As y(1) = 1
\[ \Rightarrow \log_e 1 = \log_e \frac{1}{1 + 1} + c\]
\[ \Rightarrow 0 = \log_e \frac{1}{2} + c\]
\[c = - \log_e \frac{1}{2}\]
\[ \Rightarrow c = \log_e 2\]
\[ \therefore \log_e x = \log_e \frac{y x^2}{x^3 + y^3} + \log_e 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 36.6 | पृष्ठ ८४

संबंधित प्रश्‍न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution


Which of the following is a homogeneous differential equation?


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`x * dy/dx - y + x * sin(y/x) = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×