Advertisements
Advertisements
प्रश्न
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
उत्तर
We have, `dy/dx = (x^3 - 3xy^2)/(y^3 - 3x^2 y)` ....(1)
Put y = vx
⇒ `dy/dx = v + x (dv)/dx`
∴ (1) become:
`v + x (dv)/dx = (x^3 - 3x (v^2 x^2))/(v^3 x^3 - 3x^2 vx)`
`= (1 - 3v^2)/(v^3 - 3v)`
⇒ `x (dv)/dx = (1 - 3v^2)/(v^3 - 3v) - v`
`= (1 - 3v^2 - v^4 + 3v^2)/ (v^3 - 3v)`
`= (1 - v^4)/(v^3 - 3v)`
⇒ `(v^3 - 3v)/(1 - v^4) dx = dx/x`
Integrating, `int (v^3 - 3v)/ (1 - v^4) dv = int dx/x + `constant ....(2)
Now,
`I = int (v^3 - 3v)/ (1 - v^4) dv`
`= int v^3/ (1 - v^4) dv - 3 int v/ (1 - v^4) dv` ....(3)
I = I1 - 3I2 ....(4 )
Where `I = int v^3/(1 - v^4) dv`
Put 1 - v4 = t
⇒ -4v3 dv = dt
⇒ `v^3 dv = -dt/4`
∴ `I_1 = int (-1/4 dt)/t`
`= 1/4 int 1/t dt = -1/4 log |t| + C_1`
`= -1/4 log |1 - v^4| + C_1`
And `I_2 - int v/ (1 - v^4) dv`
Put v2 = T
⇒ 2v = dT
⇒ `vdv = (dT)/2`
∴ `I_2 = int (1/2 dT)/ (1 - T^2)`
`= 1/2 int (dT)/(1^2 - T^2)`
`= 1/(2(2)) log |(1 + T)/(1 - T)| + C_2`
`= 1/4 log |(1 + v^2)/ (1 - v^2) + C_2|`
∴ From (4), we get
`I = 1/4 log |1 - v^4| -3/4 log |(1 +v^2)/(1 - v^2)| + C_1 + C_2`
From (2), we have
`- 1/4 log |1 - v^4| - 3/4 log |(1 + v^2)/ (1 - v^2)|= log |x| + log |C'|`
⇒ `-1/4 [log |1 - v^4| + 3 log |(1 + v^2)/(1 - v^2)|] = log |C' x|`
⇒ `-1/4 [log |(1 - v^2) (1 + v^2) (1 + v^2)^3/(1 - v^2)^3|] = log |C' x|`
⇒ `-1/4 [log |(1 + v^2)^4/(1 - v^2)^2|] = log |C' x |`
⇒ `log | sqrt (1 - v^2)/ (1 + v^2)| = log |C' x|`
⇒ `sqrt (1 - v^2)/ (1 + v^2) = C' x`
⇒ `sqrt (1 - y^2/x^2)/(1 + y^2/x^2) = C' x`
⇒ `sqrt (x^2 y^2) = C' (x^2 + y^2)`
Squaring on the both sides, we get
`x^2 - y^2 = C (x^2 + y^2)^2` Where C'2 = C
Hence, x2 - y2 = C (x2 + y2)2 is the general solution.
APPEARS IN
संबंधित प्रश्न
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Which of the following is a homogeneous differential equation?
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
Which of the following is not a homogeneous function of x and y.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)