मराठी

(X2 + 3xy + Y2) Dx − X2 Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(x2 + 3xy + y2) dx − x2 dy = 0

उत्तर

We have,
\[ \left( x^2 + 3xy + y^2 \right) dx - x^2 dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + 3xy + y^2}{x^2}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + 3v x^2 + v^2 x^2}{x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = 1 + 3v + v^2 - v\]
\[ \Rightarrow x\frac{dv}{dx} = 1 + v^2 + 2v\]
\[ \Rightarrow \frac{1}{1 + v^2 + 2v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 + v^2 + 2v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{\left( 1 + v \right)^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{\left( 1 + v \right)} = \log \left| x \right| + C\]
\[ \Rightarrow \log \left| x \right| + \frac{1}{\left( 1 + v \right)} = - C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \therefore \log \left| x \right| + \frac{x}{\left( x + y \right)} = C_1 \]
where
\[ C_1 = - C\]
\[\text{ Hence, }\log \left| x \right| + \frac{x}{\left( x + y \right)} = C_1\text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 31 | पृष्ठ ८३

संबंधित प्रश्‍न

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×