Advertisements
Advertisements
प्रश्न
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
उत्तर
We have,
\[ \left( 2 x^2 y + y^3 \right) dx + \left( x y^2 - 3 x^3 \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 x^2 y + y^3}{3 x^3 - x y^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{2v x^3 + v^3 x^3}{3 x^3 - v^2 x^3}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{2v + v^3}{3 - v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2v + v^3}{3 - v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2v + v^3 - 3v + v^3}{3 - v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2 v^3 - v}{3 - v^2}\]
\[ \Rightarrow \frac{3 - v^2}{2 v^3 - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{3 - v^2}{2 v^3 - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow 3\int\frac{1}{2 v^3 - v}dv - \int\frac{v^2}{2 v^3 - v}dv = \int\frac{1}{x}dx . . . . . (1)\]
\[\text{ Considering }\frac{1}{2 v^3 - v} = \frac{1}{v\left( 2 v^2 - 1 \right)}, \]
\[\text{ let }\frac{1}{v\left( 2 v^2 - 1 \right)} = \frac{A}{v} + \frac{Bv + C}{2 v^2 - 1} . . . . . (2)\]
\[1 = A\left( 2 v^2 - 1 \right) + \left( Bv + C \right) v\]
\[ \Rightarrow 1 = 2A v^2 - A + B v^2 + Cv\]
Comparing the coeficients of both sides, we get
\[ \therefore 2A + B = 0 , C = 0\text{ and }A = - 1\]
\[ \Rightarrow - 2 + B = 0\]
\[ \Rightarrow B = 2\]
\[\text{Substituting }A = - 1, B = 2\text{ and }C = 0\text{ in }(2),\text{ we get }\]
\[\frac{1}{v\left( 2 v^2 - 1 \right)} = - \frac{1}{v} + \frac{2v}{2 v^2 - 1} . . . . . (3)\]
From (2) and (3), we get
\[3\int\left( - \frac{1}{v} + \frac{2v}{2 v^2 - 1} \right)dv - \int\frac{v}{2 v^2 - 1}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - 3\int\frac{1}{v}dv + 5\int\frac{v}{2 v^2 - 1}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - 3 \log \left| v \right| + \frac{5}{4}\log \left| 2 v^2 - 1 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \frac{12 \log \left| \frac{1}{v} \right| + 5 \log \left| 2 v^2 - 1 \right|}{4} = \log \left| Cx \right|\]
\[ \Rightarrow \log \left| \frac{1}{v^{12}} \times \left( 2 v^2 - 1 \right)^5 \right| = \log \left| C^4 x^4 \right|\]
\[ \Rightarrow \left| \frac{1}{v^{12}} \times \left( 2 v^2 - 1 \right)^5 \right| = \left| C^4 x^4 \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| \frac{x^{12}}{y^{12}} \times \left( \frac{2 y^2}{x^2} - 1 \right)^5 \right| = \left| C^4 x^4 \right|\]
\[ \Rightarrow \left| \left( \frac{2 y^2 - x^2}{x^2} \right)^5 \right| = \left| C^4 x^4 \times \frac{y^{12}}{x^{12}} \right|\]
\[\text{ Hence, }C^4 x^2 y^{12} = \left| \left( 2 y^2 - x^2 \right) \right|^5\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Which of the following is a homogeneous differential equation?
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.