Advertisements
Advertisements
Question
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solution
We have,
\[ \left( 2 x^2 y + y^3 \right) dx + \left( x y^2 - 3 x^3 \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 x^2 y + y^3}{3 x^3 - x y^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{2v x^3 + v^3 x^3}{3 x^3 - v^2 x^3}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{2v + v^3}{3 - v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2v + v^3}{3 - v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2v + v^3 - 3v + v^3}{3 - v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2 v^3 - v}{3 - v^2}\]
\[ \Rightarrow \frac{3 - v^2}{2 v^3 - v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{3 - v^2}{2 v^3 - v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow 3\int\frac{1}{2 v^3 - v}dv - \int\frac{v^2}{2 v^3 - v}dv = \int\frac{1}{x}dx . . . . . (1)\]
\[\text{ Considering }\frac{1}{2 v^3 - v} = \frac{1}{v\left( 2 v^2 - 1 \right)}, \]
\[\text{ let }\frac{1}{v\left( 2 v^2 - 1 \right)} = \frac{A}{v} + \frac{Bv + C}{2 v^2 - 1} . . . . . (2)\]
\[1 = A\left( 2 v^2 - 1 \right) + \left( Bv + C \right) v\]
\[ \Rightarrow 1 = 2A v^2 - A + B v^2 + Cv\]
Comparing the coeficients of both sides, we get
\[ \therefore 2A + B = 0 , C = 0\text{ and }A = - 1\]
\[ \Rightarrow - 2 + B = 0\]
\[ \Rightarrow B = 2\]
\[\text{Substituting }A = - 1, B = 2\text{ and }C = 0\text{ in }(2),\text{ we get }\]
\[\frac{1}{v\left( 2 v^2 - 1 \right)} = - \frac{1}{v} + \frac{2v}{2 v^2 - 1} . . . . . (3)\]
From (2) and (3), we get
\[3\int\left( - \frac{1}{v} + \frac{2v}{2 v^2 - 1} \right)dv - \int\frac{v}{2 v^2 - 1}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - 3\int\frac{1}{v}dv + 5\int\frac{v}{2 v^2 - 1}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - 3 \log \left| v \right| + \frac{5}{4}\log \left| 2 v^2 - 1 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \frac{12 \log \left| \frac{1}{v} \right| + 5 \log \left| 2 v^2 - 1 \right|}{4} = \log \left| Cx \right|\]
\[ \Rightarrow \log \left| \frac{1}{v^{12}} \times \left( 2 v^2 - 1 \right)^5 \right| = \log \left| C^4 x^4 \right|\]
\[ \Rightarrow \left| \frac{1}{v^{12}} \times \left( 2 v^2 - 1 \right)^5 \right| = \left| C^4 x^4 \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| \frac{x^{12}}{y^{12}} \times \left( \frac{2 y^2}{x^2} - 1 \right)^5 \right| = \left| C^4 x^4 \right|\]
\[ \Rightarrow \left| \left( \frac{2 y^2 - x^2}{x^2} \right)^5 \right| = \left| C^4 x^4 \times \frac{y^{12}}{x^{12}} \right|\]
\[\text{ Hence, }C^4 x^2 y^{12} = \left| \left( 2 y^2 - x^2 \right) \right|^5\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the differential equation `2xydy/dx=x^2+3y^2` is homogeneous and solve it.
Find the particular solution of the differential equation:
2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(x2 + 3xy + y2) dx − x2 dy = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the following differential equation:
y2 dx + (xy + x2)dy = 0
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(ycos(y/x) + x)/(xcos(y/x))` is not a homogeneous function.
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)
Read the following passage:
An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y). To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables. |
Based on the above, answer the following questions:
- Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
- Solve the above equation to find its general solution. (2)