English

For the differential equation find a particular solution satisfying the given condition: 2xy+y2-2x2 dydx=0;y=2 when x = 1 - Mathematics

Advertisements
Advertisements

Question

For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1

Sum

Solution

The given equation

`2xy + y^2 - 2x^2 dy/dx = 0`

or `dy/dx = (2xy + y^2)/(2x^2)`

`= y/x + 1/2(y/x)^2`         ....(i)

Clearly, this equation is a differential equation.

∴ putting y = vx

`dy/dx = v + x (dv)/dx`   ....(in equation (i))

`v + x (dv)/dx = v + 1/2 v^2`

`=> x (dv)/dx = 1/2 v^2`

`=> 2 xx 1/v^2 (dv) = 1/x dv`

On integrating,

`2 int 1/v^2 dv = int 1/x dv - 2/v = log |x| + C`

So, on substituting `(y/x)` in place of v,

`- (2x)/y = log |x| + C`     ....(ii)

Given y = 2 if x = 1                 ...[from equation (ii)]

`(- 2)/2 = log1 + C`

- 1 = 0 + C

⇒ C = - 1

On putting C = – 1 in equation (ii)

`(- 2x)/y = log |x| - 1`

y = `(2x)/(1 - log |x|)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.5 [Page 406]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.5 | Q 15 | Page 406

RELATED QUESTIONS

Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


 

Show that the differential  equation `2xydy/dx=x^2+3y^2`  is homogeneous and solve it.

 

Find the particular solution of the differential equation:

2y ex/y dx + (y - 2x ex/y) dy = 0 given that x = 0 when y = 1.


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

(x2 + 3xy + y2) dx − x2 dy = 0


Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Find the general solution of the differential equation:

(xy – x2) dy = y2 dx


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×