English

For the differential equation find a particular solution satisfying the given condition: (x + y) dy + (x – y) dx = 0; y = 1 when x = 1 - Mathematics

Advertisements
Advertisements

Question

For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1

Sum

Solution

given (x + y) dy + (x – y) dx = 0

`=> dy/dx = (y - x)/(y + x)`   ...(i)

∵ The powers of the numerator and denominator are the same so this is a homogeneous differential equation.

∴ Putting y = vx 

`dy/dx = v + x (dv)/dx`   ...(in equation (i))

`=> v + x (dv)/dx = (vx - x)/(vx + x)`

`=> x (dv)/dx = (v - 1)/(v + 1) - v`

`x (dv)/dx = (v - 1 - v^2 - 1)/(v + 1)`

`= - (v^2 + 1)/(v + 1)`

`(v + 1)/(v^2 + 1)dv = - 1/x  dx`

On integrating,

`=> 1/2 int (2v)/(v^2 + 1)dv + int 1/(v^2 + 1) dv = - int 1/x dx`

`1/2 log (v^2 + 1) + tan^-1 (v) = - log x + C`

log (v2 + 1) + 2 tan-1 (v) = - 2 log x + 2C

So on putting `y/x` in place of v,

`log ((y^2 + x^2)/x^2) + 2 tan^-1 (y/x) = - log x^2 + 2C`

`log (x^2 + y^2) - log x^2 + 2 tan^-1 (y/x) = - log x^2 x + 2C`

`log (x^2 + y^2) + 2 tan^-1 (y/x) = 2C`    ....(ii)

Given y = 1 and x = 1

log (12 + 12) + 2 tan-1 (1) = 2C

log 2 + 2 tan-1 (1) = 2C

2C = log 2 + 2 `xx pi/4 = log 2 + pi/2`

Putting this value of C in equation (ii),

`log (x^2 + y^2) + 2 tan^-1 (y/x) = pi/2 + log 2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.5 [Page 406]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.5 | Q 11 | Page 406

RELATED QUESTIONS

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Which of the following is a homogeneous differential equation?


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×