English

Show that the given differential equation is homogeneous and solve them. x dy-y dx= x2+y2 dx - Mathematics

Advertisements
Advertisements

Question

Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`

Sum

Solution

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`,

Which can be written as `x  dy/dx = y + sqrt (x^2 + y^2)`

or `dy/dx = y/x + sqrt (1 + (y/x)^2)`        ....(1)

Since R.H.S. is of the form `g(y/x)`, and so it is a homogeneous function of degree zero.

Therefore equation (1) is a homogeneous differential equation.

To solve this, put y = vx

⇒ `dy/dx = v + x (dv)/dx`

Substituting the value of y and `dy/dx` in (1), we get

`v + x (dv)/dx = v + sqrt (1 + v^2)`

⇒ `x (dv)/dx = sqrt(1 + v^2)`

⇒ `dx/x = (dv)/sqrt(1 + v^2)`

⇒ `int dx/x = int (dv)/ sqrt(1 + v^2)`

⇒ `log x + log C_1 = log |v + sqrt (1+ v^2)|`

⇒ `log x + log C_1 = log |y/x + sqrt (1 + y^2/x^2)|`

⇒ `log C_1 x = log |y + sqrt (x^2 + y^2)| - log x`

⇒ `pm C_1 x^2 = y + sqrt (x^2 + y^2)`

⇒ `Cx^2 = y + sqrt (x^2 + y^2)` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.5 [Page 406]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.5 | Q 6 | Page 406

RELATED QUESTIONS

Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`x dy/dx - y +  x sin (y/x) = 0`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0\]

\[\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

(x2 + 3xy + y2) dx − x2 dy = 0


(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Which of the following is a homogeneous differential equation?


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 – y2)dx + 2xy dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2)  "d"x` and solve it


Which of the following is not a homogeneous function of x and y.


Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`


The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:

(where C is a constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×