English

Solcve: ddxdydx=y(logy–logx+1) - Mathematics

Advertisements
Advertisements

Question

Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`

Sum

Solution

Given that: `x ("d"y)/("d"x) = y(log y – log x + 1)`

⇒ `x ("d"y)/("d"x) = y[log(y/x) + 1]`

⇒ `("d"y)/("d"x) = y/x[log(y/x) + 1]`

Since, it is a homogeneous differential equation.

∴ Put y = vx

⇒ `("d"y)/("d"x) = "v" + x * "dv"/"dx"`

∴ `"v" + x * "dv"/"dx" = "vx"/x[log("vx"/x) + 1]`

⇒ `"v" + x * "dv"/"dx" = "v"[log "v" + 1]`

⇒ `x * "dv"/"dx" = "v"[log "v" + 1] - "v"`

⇒ `x * "dv"/"dx"` = v  ....[log v + 1 – 1]

⇒ `x * "dv"/"dx" = "v" * log "v"`

⇒ `"dv"/("v"log"v") = "dx"/x`

Integrating both sides, we get

`int "dv"/("v"log"v") = int "dx"/x`

Put log v = t on L.H.S.

`1/"v" "dv"` = dt

∴ `int "dt"/"t" = int "dx"/x`

`log|"t"| = log|x| + log"c"`

⇒ `log|log "v"| = log x"c"`

⇒ log v = xc

⇒ `log(y/x)` = xc

Hence, the required solution is `log(y/x)` = xc.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 195]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 33 | Page 195

RELATED QUESTIONS

Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`dy/dx -  y/x + cosec (y/x) = 0; y = 0` when x = 1


A homogeneous differential equation of the from `dx/dy = h (x/y)` can be solved by making the substitution.


Which of the following is a homogeneous differential equation?


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter


\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

(x2 + 3xy + y2) dx − x2 dy = 0


(2x2 y + y3) dx + (xy2 − 3x3) dy = 0


\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0\]

Solve the following initial value problem:
\[x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

y2 dx + (xy + x2)dy = 0


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Read the following passage:

An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form `dy/dx` = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λn F(x, y).

To solve a homogeneous differential equation of the type `dy/dx` = F(x, y) = `g(y/x)`, we make the substitution y = vx and then separate the variables.

Based on the above, answer the following questions:

  1. Show that (x2 – y2) dx + 2xy dy = 0 is a differential equation of the type `dy/dx = g(y/x)`. (2)
  2. Solve the above equation to find its general solution. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×