English

Find the Particular Solution of the Differential Equation ( X − Y ) D Y D X = X + 2 Y , Given that When X = 1, Y = 0. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.

Sum

Solution

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v + v^2}{1 - v}\]
\[ \Rightarrow \frac{1 - v}{1 + v + v^2} dv = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{1 - v}{1 + v + v^2} dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1 - 1}{1 + v + v^2} = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv + \frac{1}{2}\int\frac{1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{1 + v + v^2 + \frac{1}{4} - \frac{1}{4}}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \sqrt{3}\tan {}^{- 1} \left| \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right| - \frac{1}{2}\log \left| 1 + v + v^2 \right| = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| \frac{x^2 + xy + y^2}{x^2} \right| = \log \left| x \right| + C\]
\[ \Rightarrow \sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| + \log \left| x \right| = \log \left| x \right| + C \]
\[ \Rightarrow \sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| = C . . . . . (1) \]
\[\text{ At }x = 1, y = 0 ...........\left(\text{Given} \right)\]
\[\text{ Putting }x = 1\text{ and }y = 0\text{ in }(1),\text{ we get }\]
\[\sqrt{3} \tan^{- 1} \left| \frac{1}{\sqrt{3}} \right| - \frac{1}{2}\log \left| 1 \right| = C\]
\[ \Rightarrow C = \sqrt{3} \tan^{- 1} \left| \frac{1}{\sqrt{3}} \right|\]
\[ \Rightarrow C = \sqrt{3} \times \frac{\pi}{6}\]
\[ \Rightarrow C = \frac{\pi}{2\sqrt{3}}\]
Substituting the value of C in (1), we get 
\[\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| = \frac{\pi}{2\sqrt{3}}\]
\[ \Rightarrow 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \log \left| x^2 + xy + y^2 \right| = \frac{\pi}{\sqrt{3}}\]
\[ \Rightarrow \log \left| x^2 + xy + y^2 \right| = 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{\pi}{\sqrt{3}}\]
\[\text{ Hence, }\log \left| x^2 + xy + y^2 \right| = 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{\pi}{\sqrt{3}}\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 38 | Page 84

RELATED QUESTIONS

Solve the differential equation (x2 + y2)dx- 2xydy = 0


Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.


Solve the differential equation :

`y+x dy/dx=x−y dy/dx`


Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

`y' = (x + y)/x`


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) -  xcos(y/x)}xdy`


Show that the given differential equation is homogeneous and solve them.

`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


Which of the following is a homogeneous differential equation?


\[\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0\]

\[xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0\]

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

\[x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)\]

Solve the following initial value problem:
 (x2 + y2) dx = 2xy dy, y (1) = 0


Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1


Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Solve the following differential equation:

`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`


Solve the following differential equation:

(9x + 5y) dy + (15x + 11y)dx = 0


State whether the following statement is True or False:   

A homogeneous differential equation is solved by substituting y = vx and integrating it


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.


Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.


The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is


A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×