Advertisements
Advertisements
Question
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solution
\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx \text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v + v^2}{1 - v}\]
\[ \Rightarrow \frac{1 - v}{1 + v + v^2} dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 - v}{1 + v + v^2} dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1 - 1}{1 + v + v^2} = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv + \frac{1}{2}\int\frac{1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{1 + v + v^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{1 + v + v^2 + \frac{1}{4} - \frac{1}{4}}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx \]
\[ \Rightarrow \frac{3}{2}\int\frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv - \frac{1}{2}\int\frac{2v + 1}{1 + v + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \sqrt{3}\tan {}^{- 1} \left| \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right| - \frac{1}{2}\log \left| 1 + v + v^2 \right| = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| \frac{x^2 + xy + y^2}{x^2} \right| = \log \left| x \right| + C\]
\[ \Rightarrow \sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| + \log \left| x \right| = \log \left| x \right| + C \]
\[ \Rightarrow \sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| = C . . . . . (1) \]
\[\text{ At }x = 1, y = 0 ...........\left(\text{Given} \right)\]
\[\text{ Putting }x = 1\text{ and }y = 0\text{ in }(1),\text{ we get }\]
\[\sqrt{3} \tan^{- 1} \left| \frac{1}{\sqrt{3}} \right| - \frac{1}{2}\log \left| 1 \right| = C\]
\[ \Rightarrow C = \sqrt{3} \tan^{- 1} \left| \frac{1}{\sqrt{3}} \right|\]
\[ \Rightarrow C = \sqrt{3} \times \frac{\pi}{6}\]
\[ \Rightarrow C = \frac{\pi}{2\sqrt{3}}\]
Substituting the value of C in (1), we get
\[\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{1}{2}\log \left| x^2 + xy + y^2 \right| = \frac{\pi}{2\sqrt{3}}\]
\[ \Rightarrow 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \log \left| x^2 + xy + y^2 \right| = \frac{\pi}{\sqrt{3}}\]
\[ \Rightarrow \log \left| x^2 + xy + y^2 \right| = 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{\pi}{\sqrt{3}}\]
\[\text{ Hence, }\log \left| x^2 + xy + y^2 \right| = 2\sqrt{3} \tan^{- 1} \left| \frac{2y + x}{\sqrt{3}x} \right| - \frac{\pi}{\sqrt{3}}\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Solve the differential equation :
`y+x dy/dx=x−y dy/dx`
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
`y' = (x + y)/x`
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`{xcos(y/x) + ysin(y/x)}ydx = {ysin (y/x) - xcos(y/x)}xdy`
Show that the given differential equation is homogeneous and solve them.
`(1+e^(x/y))dx + e^(x/y) (1 - x/y)dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
Which of the following is a homogeneous differential equation?
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
Solve the following initial value problem:
\[x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x\]
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Solve the following differential equation:
`"dy"/"dx" + ("x" - "2y")/("2x" - "y") = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"x"^2 "dy"/"dx" = "x"^2 + "xy" + "y"^2`
Solve the following differential equation:
(9x + 5y) dy + (15x + 11y)dx = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
A homogeneous differential equation of the `(dx)/(dy) = h(x/y)` can be solved by making the substitution.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.