Advertisements
Advertisements
Question
Solution
We have,
\[x \cos\left( \frac{y}{x} \right)\left( y dx + x dy \right) = y \sin \left( \frac{y}{x} \right)\left( x dy - y dx \right)\]
\[ \Rightarrow xy \cos \left( \frac{y}{x} \right) dx + x^2 \cos \left( \frac{y}{x} \right) dy = xy \sin \left( \frac{y}{x} \right) dy - y^2 \sin \left( \frac{y}{x} \right) dx\]
\[ \Rightarrow \left[ xy \cos \left( \frac{y}{x} \right) + y^2 \sin \left( \frac{y}{x} \right) \right] dx = \left[ xy \sin \left( \frac{y}{x} \right) - x^2 \cos \left( \frac{y}{x} \right) \right] dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{xy \cos \left( \frac{y}{x} \right) + y^2 \sin \left( \frac{y}{x} \right)}{xy \sin \left( \frac{y}{x} \right) - x^2 \cos \left( \frac{y}{x} \right)}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v x^2 \cos v + v^2 x^2 \sin v}{v x^2 \sin v - x^2 \cos v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + v^2 \sin v - v^2 \sin v + v \cos v}{v \sin v - \cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{2v \cos v}{v \sin v - \cos v}\]
\[ \Rightarrow \frac{v\sin v - \cos v}{2 v \cos v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v\sin v - \cos v}{2 v \cos v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v\sin v - \cos v}{v \cos v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v \sin v}{v \cos v}dv - \int\frac{\cos v}{v \cos v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \int\tan v dv - \int\frac{1}{v}dv = 2\int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \sec v \right| - \log \left| v \right| = 2 \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{\sec v}{v} \right| = \log \left| C x^2 \right|\]
\[ \Rightarrow \frac{\sec v}{v} = C x^2 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\sec \left( \frac{y}{x} \right) = \frac{y}{x} \times C \times x^2 \]
\[ \Rightarrow \sec \left( \frac{y}{x} \right) = Cxy\]
\[\text{Hence, }\sec \left( \frac{y}{x} \right) = Cxy\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation (x2 + y2)dx- 2xydy = 0
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`dy/dx - y/x + cosec (y/x) = 0; y = 0` when x = 1
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0
Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solve the following initial value problem:
\[\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}\]
A homogeneous differential equation of the form \[\frac{dx}{dy} = h\left( \frac{x}{y} \right)\] can be solved by making the substitution
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`x * dy/dx - y + x * sin(y/x) = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(x2 – y2)dx + 2xy dy = 0
State whether the following statement is True or False:
A homogeneous differential equation is solved by substituting y = vx and integrating it
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is