Advertisements
Advertisements
Question
Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1
Solution
\[x( x^2 + 3 y^2 )dx + y( y^2 + 3 x^2 )dy = 0, y(1) = 1\]
\[ \frac{dy}{dx} = \frac{- x( x^2 + 3 y^2 )}{y( y^2 + 3 x^2 )}\]
it is a homogeneous equation . Put y = vx
\[\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ So, }v + x\frac{dv}{dx} = - \frac{x( x^2 + 3 v^2 x^2 )}{vx( v^2 x^2 + 3 x^2 )}\]
\[x\frac{dv}{dx} = - \frac{(1 + 3 v^2 )}{v( v^2 + 3)} - 3\]
\[ = \frac{- 1 - 3 v^2 - v^4 - 3 v^2}{v( v^2 + 3)}\]
\[x\frac{dv}{dx} = \frac{- v^4 - 6 v^2 - 1}{v( v^2 + 3)}\]
\[\frac{v( v^2 + 3)}{v^4 + 6 v^2 + 1}dv = - \frac{dx}{x}\]
\[\int\frac{4 v^3 + 12v}{v^4 + 6 v^2 + 1}dv = - 4\int\frac{dx}{x}\]
\[\log\left| v^4 + 6 v^2 + 1 \right| = \log\left| \frac{c}{x^4} \right|\]
\[\left| v^4 + 6 v^2 + 1 \right| = \left| \frac{c}{x^4} \right|\]
\[\left| y^4 + 6 y^2 x^2 + x^4 \right| = \left| c \right| . . . . (1)\]
\[\text{ put }y = 1, x = 1\]
\[(1 + 6 + 1) = c \Rightarrow c = 8\]
\[\text{ put }c = 8\text{ in equation }(1), \]
\[( y^4 + x^4 + 6 x^2 y^2 ) = 8\]
APPEARS IN
RELATED QUESTIONS
Show that the differential equation 2yx/y dx + (y − 2x ex/y) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1.
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x dy - y dx = sqrt(x^2 + y^2) dx`
Show that the given differential equation is homogeneous and solve them.
`x dy/dx - y + x sin (y/x) = 0`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y)dy, where C is parameter
(2x2 y + y3) dx + (xy2 − 3x3) dy = 0
Solve the following initial value problem:
\[\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0\]
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Solve the following initial value problem:
\[\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2\]
Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Find the particular solution of the differential equation \[\left( x - y \right)\frac{dy}{dx} = x + 2y\], given that when x = 1, y = 0.
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"y"^2 - "x"^2 "dy"/"dx" = "xy""dy"/"dx"`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
State the type of the differential equation for the equation. xdy – ydx = `sqrt(x^2 + y^2) "d"x` and solve it
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` is a homogeneous function of degree ______.
Solve : `x^2 "dy"/"dx"` = x2 + xy + y2.
Solcve: `x ("d"y)/("d"x) = y(log y – log x + 1)`
The solution of the differential equation `(1 + e^(x/y)) dx + e^(x/y) (1 + x/y) dy` = 0 is
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
Find the general solution of the differential equation:
(xy – x2) dy = y2 dx