English

Solve the Differential Equation: D Y D X = X + Y X − Y - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation:  ` (dy)/(dx) = (x + y )/ (x - y )`

Sum

Solution

The given differential equation is:

⇒ `dy/dx = (x + y)/( x - y)`           ....(1)

Let F (x, y) = `(x + y)/( x - y)`

∴ F ( λx, λy) = `(λx + λy)/( λx - λy) = (x + y)/( x - y) = λ° . F(x, y)`  

Thus, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as: y = vx
⇒ `d/dx (y) = d/dx (vx)`

⇒ `dy/dx = v + x (dv)/dx`

Substituting the values of y and in equation (1), we get:

`v + x (dv)/(dx) = (x + vx)/(x - vx) = (1 + v)/(1 - v)`

⇒ `x (dv)/(dx) = (1 + v)/(1 - v) - v = (1 + v - v( 1 - v))/( 1 - v)`

⇒ `x (dv)/(dx) = (1 + v^2)/(1 - v)`

⇒ `(1 - v)/(1 + v^2) (dv) = (dx)/x`

Integrating both sides, we get:

`tan^-1v - 1/2 log ( 1 + y^2 ) = log x + c`

⇒ `tan^-1 (y/x) - 1/2 log [ 1 + (y/x)^2 ] = log x + c`

⇒ `tan^-1 (y/x) - 1/2 log ((x^2 + y^2)/x^2) = log x + c`

⇒ `tan^-1 (y/x) - 1/2 [ log ((x^2 + y^2)- log x^2) ] = log x + c`

⇒ `tan^-1 (y/x) - 1/2 log (x^2 + y^2) + c`

This is the required solution of the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

Show that the given differential equation is homogeneous and solve them.

(x2 + xy) dy = (x2 + y2) dx


Show that the given differential equation is homogeneous and solve them.

(x – y) dy – (x + y) dx = 0


Show that the given differential equation is homogeneous and solve them.

(x2 – y2) dx + 2xy dy = 0


Show that the given differential equation is homogeneous and solve them.

`x^2 dy/dx = x^2 - 2y^2 + xy`


Show that the given differential equation is homogeneous and solve them.

`y  dx + x log(y/x)dy - 2x  dy = 0`


For the differential equation find a particular solution satisfying the given condition:

(x + y) dy + (x – y) dx = 0; y = 1 when x = 1


For the differential equation find a particular solution satisfying the given condition:

`[xsin^2(y/x - y)] dx + x  dy = 0; y = pi/4 "when"  x = 1`


For the differential equation find a particular solution satisfying the given condition:

`2xy + y^2 - 2x^2  dy/dx = 0; y = 2`   when x  = 1


Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation  (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.


Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.


\[x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}\]

Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1


Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]


Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]


Which of the following is a homogeneous differential equation?


Solve the following differential equation : \[\left[ y - x  \cos\left( \frac{y}{x} \right) \right]dy + \left[ y  \cos\left( \frac{y}{x} \right) - 2x  \sin\left( \frac{y}{x} \right) \right]dx = 0\] .


Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.


Solve the following differential equation:

`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`


Solve the following differential equation:

`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`


Solve the following differential equation:

`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`


Solve the following differential equation:

`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`


Solve the following differential equation:

x dx + 2y dx = 0, when x = 2, y = 1


Solve the following differential equation:

(x2 + 3xy + y2)dx - x2 dy = 0


Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2  y/x`.


Which of the following is not a homogeneous function of x and y.


F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.


Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.


If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×