Advertisements
Advertisements
Question
Solve the differential equation: ` (dy)/(dx) = (x + y )/ (x - y )`
Solution
The given differential equation is:
⇒ `dy/dx = (x + y)/( x - y)` ....(1)
Let F (x, y) = `(x + y)/( x - y)`
∴ F ( λx, λy) = `(λx + λy)/( λx - λy) = (x + y)/( x - y) = λ° . F(x, y)`
Thus, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as: y = vx
⇒ `d/dx (y) = d/dx (vx)`
⇒ `dy/dx = v + x (dv)/dx`
Substituting the values of y and in equation (1), we get:
`v + x (dv)/(dx) = (x + vx)/(x - vx) = (1 + v)/(1 - v)`
⇒ `x (dv)/(dx) = (1 + v)/(1 - v) - v = (1 + v - v( 1 - v))/( 1 - v)`
⇒ `x (dv)/(dx) = (1 + v^2)/(1 - v)`
⇒ `(1 - v)/(1 + v^2) (dv) = (dx)/x`
Integrating both sides, we get:
`tan^-1v - 1/2 log ( 1 + y^2 ) = log x + c`
⇒ `tan^-1 (y/x) - 1/2 log [ 1 + (y/x)^2 ] = log x + c`
⇒ `tan^-1 (y/x) - 1/2 log ((x^2 + y^2)/x^2) = log x + c`
⇒ `tan^-1 (y/x) - 1/2 [ log ((x^2 + y^2)- log x^2) ] = log x + c`
⇒ `tan^-1 (y/x) - 1/2 log (x^2 + y^2) + c`
This is the required solution of the given differential equation.
RELATED QUESTIONS
Show that the given differential equation is homogeneous and solve them.
(x2 + xy) dy = (x2 + y2) dx
Show that the given differential equation is homogeneous and solve them.
(x – y) dy – (x + y) dx = 0
Show that the given differential equation is homogeneous and solve them.
(x2 – y2) dx + 2xy dy = 0
Show that the given differential equation is homogeneous and solve them.
`x^2 dy/dx = x^2 - 2y^2 + xy`
Show that the given differential equation is homogeneous and solve them.
`y dx + x log(y/x)dy - 2x dy = 0`
For the differential equation find a particular solution satisfying the given condition:
(x + y) dy + (x – y) dx = 0; y = 1 when x = 1
For the differential equation find a particular solution satisfying the given condition:
`[xsin^2(y/x - y)] dx + x dy = 0; y = pi/4 "when" x = 1`
For the differential equation find a particular solution satisfying the given condition:
`2xy + y^2 - 2x^2 dy/dx = 0; y = 2` when x = 1
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation (x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.
Find the particular solution of the differential equation `(x - y) dy/dx = (x + 2y)` given that y = 0 when x = 1.
Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1
Find the particular solution of the differential equation x cos\[\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\], given that when x = 1, \[y = \frac{\pi}{4}\]
Show that the family of curves for which \[\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\], is given by \[x^2 - y^2 = Cx\]
Which of the following is a homogeneous differential equation?
Solve the following differential equation : \[\left[ y - x \cos\left( \frac{y}{x} \right) \right]dy + \left[ y \cos\left( \frac{y}{x} \right) - 2x \sin\left( \frac{y}{x} \right) \right]dx = 0\] .
Solve the differential equation: x dy - y dx = `sqrt(x^2 + y^2)dx,` given that y = 0 when x = 1.
Solve the following differential equation:
`"x" sin ("y"/"x") "dy" = ["y" sin ("y"/"x") - "x"] "dx"`
Solve the following differential equation:
`(1 + 2"e"^("x"/"y")) + 2"e"^("x"/"y")(1 - "x"/"y") "dy"/"dx" = 0`
Solve the following differential equation:
`(1 + "e"^("x"/"y"))"dx" + "e"^("x"/"y")(1 - "x"/"y")"dy" = 0`
Solve the following differential equation:
`"xy" "dy"/"dx" = "x"^2 + "2y"^2, "y"(1) = 0`
Solve the following differential equation:
x dx + 2y dx = 0, when x = 2, y = 1
Solve the following differential equation:
(x2 + 3xy + y2)dx - x2 dy = 0
Find the equation of a curve passing through `(1, pi/4)` if the slope of the tangent to the curve at any point P(x, y) is `y/x - cos^2 y/x`.
Which of the following is not a homogeneous function of x and y.
F(x, y) = `(x^2 + y^2)/(x - y)` is a homogeneous function of degree 1.
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation, 2x2dy = (2xy + y2)dx, then `f(1/2)` is equal to ______.