English

Let →A,→B and →C Be Three Vectors Such that | → a | = 1 ,| ∣ → B ∣ ∣ = 2 and |→C|=3 .If the Projection of →B Along → a is Equal to the Projection of → C Along → a ; and → B, → C - Mathematics

Advertisements
Advertisements

Question

Let `veca` , `vecb` and `vecc` be three vectors such that `|veca| = 1,|vecb| = 2, |vecc| = 3.` If the projection of `vecb` along `veca` is equal to the projection of `vecc` along `veca`; and `vecb` , `vecc` are perpendicular to each other, then find `|3veca - 2vecb + 2vecc|`.

Sum

Solution

Given,

`|veca|= 1,|vecb|= 2,|vecc|= 3`

the projection of `vecb    "along"    veca = (vecb·veca)/|veca|`

the projection of `vecc     "along"    veca = (vecc·veca)/|veca|`

According to the question,

Projection of `vecb    "along"  veca = "Projection of"  vecc   "along"  veca`

⇒ `(vecb·veca)/|veca| = (vecc·veca)/|veca|`

⇒ `vecb·veca = vecc·veca`                     ......(i)

since `vecb and vecc` are perpendicular to each other, we have

`vecb. vecc = 0`                                      ......(ii)

`(3veca - 2vecb + 2vecc)·(3veca - 2vecb + 2vecc) = 9|veca|^2 -6veca·vecb + 6veca·vecc - 6vecb·veca + 4 |vecb|^2 -4vecb·vecc + 6vecc·veca - 4vecc·vecb + 4|vecc|^2`

`|3veca - 2vecb + 2vecc|^2 = 9|veca|^2 + 4|vecb|^2 + 4|vecc|^2 -12veca·vecb + 12veca·vecc - 8vecb·vecc`       ....(iiii)

From (i), (ii) and (iii)

`|3veca - 2vecb + 2vecc|^2 = 9|veca|^2 + 4|vecb|^2 + 4|vecc|^2`

⇒ `|3veca - 2vecb + 2vecc|^2` = 9 x 1 + 4 x 4 + 4 x 9 = 61

⇒ `|3veca - 2vecb + 2vecc| = sqrt(61)`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the angle between two vectors `veca` and `vecb` with magnitudes `sqrt3` and 2, respectively having `veca.vecb = sqrt6`.


Find the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`.


Find the projection of the vector `hati - hatj` on the vector `hati + hatj`.


Find the projection of the vector `hati + 3hatj + 7hatk`  on the vector `7hati - hatj + 8hatk`.


If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find ∠ABC. [∠ABC is the angle between the vectors `bar(BA)` and `bar(BC)`].


Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, –1) are collinear.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


If P, Q and R are three collinear points such that \[\overrightarrow{PQ} = \vec{a}\] and \[\overrightarrow{QR} = \vec{b}\].  Find the vector \[\overrightarrow{PR}\].


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a,} \vec{b,} 3 \vec{a} - 2 \vec{b}\]


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a} + \vec{b} + \vec{c} , 4 \vec{a} + 3 \vec{b} , 10 \vec{a} + 7 \vec{b} - 2 \vec{c}\]


Using vectors, find the value of λ such that the points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) are collinear.


Using vector method, prove that the following points are collinear:
A (2, −1, 3), B (4, 3, 1) and C (3, 1, 2)


Projection vector of `vec"a"` on `vec"b"` is ______.


What is the angle between two vectors `veca` and `vecb` with magnitudes `sqrt(3)` and 2 respectively, such that `veca * vecb = sqrt(6)`


What is the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`


What is the projection of vector `hati - hatj` on the vector `hati + hatj`.


If `veca` is a non zero vector of magnitude `a` and `lambda` `veca` non-zero scolor, then `lambda` is a unit vector of.


The scalar projection of the vector `3hati - hatj - 2hatk` on the vector `hati + 2hatj - 3hatk` is ______.


If `veca` and `vecb` are unit vectors and θ is the angle between them, then prove that `sin  θ/2 = 1/2 |veca  - vecb|`.


Write the projection of the vector `(vecb + vecc)` on the vector `veca`, where `veca = 2hati - 2hatj + hatk, vecb = hati + 2hatj - 2hatk` and `vecc = 2hati - hatj + 4hatk`.


Projection of vector `2hati + 3hatj` on the vector `3hati - 2hatj` is ______.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `vecc* vecd = 15` is equally inclined to `veca, vecb "and"  vecc.` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×