English

If a→,b→,c→ are mutually perpendicular vectors of equal magnitudes, show that the vector c→⋅d→=15 is equally inclined to anda→,b→and c→. - Mathematics

Advertisements
Advertisements

Question

If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `vecc* vecd = 15` is equally inclined to `veca, vecb "and"  vecc.` 

Sum

Solution

`veca, vecb, vecc`  are of equal magnitude

`|veca| =  |vecb| = |vecc|`

`veca, vecb, vecc` are mutedly  ⊥ to each other `veca * vecb = vecb * vecc = vecc * veca = 0`

`(veca + vecb + vecc)* veca = |veca + vecb + vecc| cos alpha`

α angle of `(veca + vecb + vecc)* veca`

⇒ `veca * vecd + vecb * veca + vecc * veca`

`= |veca + vecb + vecc| |veca| cos alpha`

`|veca|^2 = |veca + vecb + vecc| |veca|cos alpha`

`cos alpha = |veca|/ |veca + vecb + vecc|`

`(veca + vecb + vecc) * vecb = |veca + vecb + vecc| |vecb| cos  beta`

`beta ` angle of `(veca + vecb + vecc)* vecb`

⇒ `veca* vecb + vecb * vecb + vecc * vecb = |veca + vecb + vecc| |vecb| cos beta`

`|vecb|^2 = |veca + vecb + vecc| |vecc| cos gamma`

`gamma  "angle of" (veca + vecb + vecc)*vecc`

`veca *vecc + vecb*vecc + vecc* vecc = |veca + vecb + vecc| |vecc| cos gamma`

`cos gamma = |vecc|/|veca + vecb + vecc|`

But `|veca| = |vecb| = |vecc|`

`cos alpha = cos beta = cos gamma`

`alpha = beta = gamma`

`veca + vecb + vecc` are inclined to `veca, vecb, vecc`

shaalaa.com
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the angle between two vectors `veca` and `vecb` with magnitudes `sqrt3` and 2, respectively having `veca.vecb = sqrt6`.


Find the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`.


Find the projection of the vector `hati - hatj` on the vector `hati + hatj`.


Find the projection of the vector `hati + 3hatj + 7hatk`  on the vector `7hati - hatj + 8hatk`.


If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find ∠ABC. [∠ABC is the angle between the vectors `bar(BA)` and `bar(BC)`].


Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, –1) are collinear.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


If P, Q and R are three collinear points such that \[\overrightarrow{PQ} = \vec{a}\] and \[\overrightarrow{QR} = \vec{b}\].  Find the vector \[\overrightarrow{PR}\].


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a,} \vec{b,} 3 \vec{a} - 2 \vec{b}\]


Using vectors, find the value of λ such that the points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) are collinear.


Using vector method, prove that the following points are collinear:
A (6, −7, −1), B (2, −3, 1) and C (4, −5, 0)


Using vector method, prove that the following points are collinear:
A (1, 2, 7), B (2, 6, 3) and C (3, 10, −1)


Using vector method, prove that the following points are collinear:
A (−3, −2, −5), B (1, 2, 3) and C (3, 4, 7)


Let `veca` , `vecb` and `vecc` be three vectors such that `|veca| = 1,|vecb| = 2, |vecc| = 3.` If the projection of `vecb` along `veca` is equal to the projection of `vecc` along `veca`; and `vecb` , `vecc` are perpendicular to each other, then find `|3veca - 2vecb + 2vecc|`.


The projection of vector `vec"a" = 2hat"i" - hat"j" + hat"k"` along `vec"b" = hat"i" + 2hat"j" + 2hat"k"` is ______.


Projection vector of `vec"a"` on `vec"b"` is ______.


What is the angle between two vectors `veca` and `vecb` with magnitudes `sqrt(3)` and 2 respectively, such that `veca * vecb = sqrt(6)`


What is the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`


What is the projection of vector `hati - hatj` on the vector `hati + hatj`.


If `veca` is a non zero vector of magnitude `a` and `lambda` `veca` non-zero scolor, then `lambda` is a unit vector of.


The scalar projection of the vector `3hati - hatj - 2hatk` on the vector `hati + 2hatj - 3hatk` is ______.


If `veca` and `vecb` are unit vectors and θ is the angle between them, then prove that `sin  θ/2 = 1/2 |veca  - vecb|`.


Projection of vector `2hati + 3hatj` on the vector `3hati - 2hatj` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×