English

Find the Vector Equation of the Line Passing Through the Point A(1, 2, –1) and Parallel to the Line 5x – 25 = 14 – 7y = 35z - Mathematics

Advertisements
Advertisements

Questions

Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.

Find the vector and the Cartesian equations of a line that passes through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.

Sum

Solution

The equation of the line 5x − 25 = 14 − 7y = 35z can be re-written as

`(x-5)/(1/5) = (y -2)/(-1/7) = z/(1/35)`

`\implies (x - 5)/7 = (y-2)/(-5) = z/1`

Since the required line is parallel to the given line, so the direction ratios of the required line are proportional to 7, −5, 1.

The vector equation of the required line passing through the point (1, 2, −1) and having direction ratios proportional to 7, −5, 1 is 

`vecr = (hati + 2hatj - hatk) + lambda(7hati - 5hatj + hatk)`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the angle between two vectors `veca` and `vecb` with magnitudes `sqrt3` and 2, respectively having `veca.vecb = sqrt6`.


Find the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`.


Find the projection of the vector `hati + 3hatj + 7hatk`  on the vector `7hati - hatj + 8hatk`.


If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find ∠ABC. [∠ABC is the angle between the vectors `bar(BA)` and `bar(BC)`].


Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, –1) are collinear.


If P, Q and R are three collinear points such that \[\overrightarrow{PQ} = \vec{a}\] and \[\overrightarrow{QR} = \vec{b}\].  Find the vector \[\overrightarrow{PR}\].


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a,} \vec{b,} 3 \vec{a} - 2 \vec{b}\]


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a} + \vec{b} + \vec{c} , 4 \vec{a} + 3 \vec{b} , 10 \vec{a} + 7 \vec{b} - 2 \vec{c}\]


Using vectors, find the value of λ such that the points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) are collinear.


Using vector method, prove that the following points are collinear:
A (6, −7, −1), B (2, −3, 1) and C (4, −5, 0)


Using vector method, prove that the following points are collinear:
A (−3, −2, −5), B (1, 2, 3) and C (3, 4, 7)


The projection of vector `vec"a" = 2hat"i" - hat"j" + hat"k"` along `vec"b" = hat"i" + 2hat"j" + 2hat"k"` is ______.


Projection vector of `vec"a"` on `vec"b"` is ______.


What is the angle between two vectors `veca` and `vecb` with magnitudes `sqrt(3)` and 2 respectively, such that `veca * vecb = sqrt(6)`


What is the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`


What is the projection of vector `hati - hatj` on the vector `hati + hatj`.


If `veca` is a non zero vector of magnitude `a` and `lambda` `veca` non-zero scolor, then `lambda` is a unit vector of.


If `veca` and `vecb` are unit vectors and θ is the angle between them, then prove that `sin  θ/2 = 1/2 |veca  - vecb|`.


Write the projection of the vector `(vecb + vecc)` on the vector `veca`, where `veca = 2hati - 2hatj + hatk, vecb = hati + 2hatj - 2hatk` and `vecc = 2hati - hatj + 4hatk`.


Projection of vector `2hati + 3hatj` on the vector `3hati - 2hatj` is ______.


A unit vector `hata` makes equal but acute angles on the coordinate axes. The projection of the vector `hata` on the vector `vecb = 5hati + 7hatj - hatk` is ______.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `vecc* vecd = 15` is equally inclined to `veca, vecb "and"  vecc.` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×