Advertisements
Advertisements
Question
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Solution
The given function is:
f(x) = 4x3 - 18x2 + 27x - 7
On differentiating both sides with respect to x, we get
f'(x) = 12x2 - 36x + 27
⇒f'(x) = 3(4x2 - 12x + 9)
⇒f'(x) = 3(2x - 3)2
which is always positive for all x ∈ R.
Since, f'(x) ≥ 0 ∀ x ∈ R,
Therefore, f(x) is always increasing on R
APPEARS IN
RELATED QUESTIONS
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
The function f(x) = xx decreases on the interval
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
For every value of x, the function f(x) = `1/7^x` is ______
The function `1/(1 + x^2)` is increasing in the interval ______
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Function given by f(x) = sin x is strictly increasing in.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.