Advertisements
Advertisements
Question
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Options
x < 0
x > 1
x < 1
0 < x < 1
Solution
0 < x < 1
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[\text { Case 1: Let }x < 0 \]
\[\text { If x < 0 , then }\left| x \right| = - x\]
\[ \Rightarrow \left| x - 1 \right| = - \left( x - 1 \right)\]
\[\text { Now,}\]
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[ = - x - \left( - x + 1 \right)\]
\[ = - x + x - 1\]
\[ = - 1\]
\[f'\left( x \right) = 0\]
\[\text { So,f }\left( x \right) \text { is not monotonically increasing when x< 0.}\]
\[\text { Case 2: Let }0 < x < 1\]
\[\text { Here,} \]
\[\left| x \right| = x\]
\[ \Rightarrow \left| x - 1 \right| = - \left( x - 1 \right)\]
\[\text { Now,}\]
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[ = x + x - 1\]
\[ = 2x - 1\]
\[f'\left( x \right) = 2 > 0\]
\[\text { So },f\left( x \right) \text { is monotonically increasing when }0 < x < 1 . \]
\[\text { Case 3: Let x > 1} \]
\[\text { Ifx > 0, then }\left| x \right| = x\]
\[ \Rightarrow \left| x - 1 \right| = \left( x - 1 \right)\]
\[\text { Now,}\]
\[f\left( x \right) = \left| x \right| - \left| x - 1 \right|\]
\[ = x - x + 1\]
\[ = 1\]
\[f'\left( x \right) = 0\]
\[\text { So },f\left( x \right)\text { is not monotonically increasing when x >1 }.\]
\[\text { Thus },f\left( x \right) \text { is monotonically increasing when 0 < x < 1} . \]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
The function f(x) = xx decreases on the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The function f(x) = tan-1 x is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Show that function f(x) = tan x is increasing in `(0, π/2)`.
y = log x satisfies for x > 1, the inequality ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?