Advertisements
Advertisements
Question
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Solution
It is known that- f (x) = x3 - 3x2 + 3x - 100
`therefore` f'(x) = 3x2 - 6x + 3
= 3 (x2 - 2x + 1)
= 3 (x - 1)2 ≥ 0 for all `x in R`
= 3(x - 1)2 > 0
∀ x ∈ R, f''(x) = positive
Hence, the function f is increasing.
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = | x | − | x − 1 | is monotonically increasing when
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
Which of the following graph represent the strictly increasing function.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
y = log x satisfies for x > 1, the inequality ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.