English

Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R. - Mathematics

Advertisements
Advertisements

Question

Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.

Sum

Solution

It is known that- f (x) = x3 - 3x2 + 3x - 100

`therefore` f'(x) = 3x2 - 6x + 3

= 3 (x2 - 2x + 1)

= 3 (x - 1)2 ≥ 0 for all `x in R`

= 3(x - 1)2 > 0

∀ x ∈ R, f''(x) = positive

Hence, the function f is increasing.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.2 [Page 206]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.2 | Q 18 | Page 206

RELATED QUESTIONS

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


Which of the following graph represent the strictly increasing function.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


y = log x satisfies for x > 1, the inequality ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×