Advertisements
Advertisements
Question
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Solution
Here f(x) = log cos x
`therefore f'(x) = 1/(cos x) (- sin x) = - tan x`
(i) In the interval `(0, pi/2)`, tan x = + ve
∴ f' (x) = - ve
Hence, f is a decreasing function.
(ii) In the interval `(pi/2, pi)`, tan x = - ve
∴ f' (x) = - tan x = - ve
Hence, f is an increasing function.
APPEARS IN
RELATED QUESTIONS
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
The interval in which y = x2 e–x is increasing is ______.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Show that f(x) = x – cos x is increasing for all x.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
The function f (x) = 2 – 3 x is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Function given by f(x) = sin x is strictly increasing in.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.