Advertisements
Advertisements
Question
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Solution
f(x) = 2x3 – 6x2 + 6x + 24
∴ f′(x) = 6x2 – 12x + 6
= 6(x2 – 2x + 1)
= 6(x – 1)2
f(x) is strictly increasing, if f′(x) > 0
∴ 6(x – 1)2 > 0
∴ (x – 1)2 > 0 for all x ∈ R, x ≠ 1
Thus, f(x) is strictly increasing for x ∈ R – {1}.
APPEARS IN
RELATED QUESTIONS
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = ax is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Find `dy/dx,if e^x+e^y=e^(x-y)`
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that f(x) = x – cos x is increasing for all x.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = 9 - x5 - x7 is decreasing for
The function f(x) = x3 - 3x is ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
The function f(x) = sin x + 2x is ______
For every value of x, the function f(x) = `1/7^x` is ______
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The function f(x) = tan-1 x is ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
y = log x satisfies for x > 1, the inequality ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.