English

State whether the following statement is true or false. If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b). - Mathematics and Statistics

Advertisements
Advertisements

Question

State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

If f"(x) > 0 for all x ∈ (a, b), then f(x) is decreasing function in the interval (a, b).

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (March) Set 1

RELATED QUESTIONS

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Prove that the logarithmic function is strictly increasing on (0, ∞).


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


The function f(x) = cot−1 x + x increases in the interval


Function f(x) = x3 − 27x + 5 is monotonically increasing when


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


y = x(x – 3)2 decreases for the values of x given by : ______.


The function f(x) = tan-1 x is ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×