Advertisements
Advertisements
Question
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Solution
\[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\]
\[f'\left( x \right) = 12 x^2 - 36x + 27\]
\[ \Rightarrow f'\left( x \right) = 3\left( 4 x^2 - 12x + 9 \right)\]
\[ \Rightarrow f'\left( x \right) = 3 \left( 2x - 3 \right)^2 > 0, \forall x \in R\]
So, f(x) is increasing on R.
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
The function f(x) = cot−1 x + x increases in the interval
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The function f(x) = 9 - x5 - x7 is decreasing for
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
The function f (x) = 2 – 3 x is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Which of the following graph represent the strictly increasing function.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
y = log x satisfies for x > 1, the inequality ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.