Advertisements
Advertisements
Question
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Solution
We know, y = [x (x – 2)]² = x² (x + 4 – 4x)
= x4 – 4x3 + 4x2
On differentiating with respect to x,
`dy/dx` = 4x2 - 12x2 + 8x
= 4x (x2 - 3x + 2)
= 4x ( x - 1) (x - 2)
`dy/dx` = 0
`=>` 4x ( x - 1) (x - 2) = 0
`therefore` x = 0, 1, 2
∴ Four parts of real number line from x = 0, x = 1, x = 2 are intervals.
(`- infty`, 0), (0, 1), (1, 2), (2, 2) are formed.
Interval | (∞, 0) | (0, 1) | (1, 2) | (2, ∞) |
Sign of x | -ve | +ve | +ve | +ve |
sign of (x - 1) | -ve | - ve | +ve | +ve |
sign of (x - 2) | -ve | - ve | -ve | +ve |
sign of `dy/dx` | -ve | +ve | -ve | +ve |
nature of function | decreasing | increasing | decreasing | increasing |
∴ y is an increasing function in (0, 1) ∪ (2, ∞)
APPEARS IN
RELATED QUESTIONS
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36ЁЭСе + 6 is monotonically decreasing
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
For every value of x, the function f(x) = `1/7^x` is ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Function given by f(x) = sin x is strictly increasing in.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.