English

Find the Values of B for Which the Function F(X) = Sin X − Bx + C is a Decreasing Function on R ? - Mathematics

Advertisements
Advertisements

Question

Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?

Sum

Solution

\[f\left( x \right) = \sin x - bx + c\]

\[f'\left( x \right) = \cos x - b\]

\[\text { Given }:f\left( x \right) \text { is decreasing on R }.\]

\[f'\left( x \right) < 0, \forall x \in R\]

\[ \Rightarrow \cos x - b < 0, \forall x \in R\]

\[\Rightarrow\cos x - b < 0, \forall x \in R \]

\[ \Rightarrow \cos x < b, \forall x \in R\]

\[ \Rightarrow b \geqslant 1 \left[ \because - 1 \leqslant \cos x \leqslant 1 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 36 | Page 35

RELATED QUESTIONS

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Every invertible function is


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Show that f(x) = x – cos x is increasing for all x.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


For every value of x, the function f(x) = `1/7^x` is ______ 


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


y = x(x – 3)2 decreases for the values of x given by : ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f (x) = 2 – 3 x is ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


Function given by f(x) = sin x is strictly increasing in.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×