Advertisements
Advertisements
प्रश्न
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
उत्तर
\[f\left( x \right) = \sin x - bx + c\]
\[f'\left( x \right) = \cos x - b\]
\[\text { Given }:f\left( x \right) \text { is decreasing on R }.\]
\[f'\left( x \right) < 0, \forall x \in R\]
\[ \Rightarrow \cos x - b < 0, \forall x \in R\]
\[\Rightarrow\cos x - b < 0, \forall x \in R \]
\[ \Rightarrow \cos x < b, \forall x \in R\]
\[ \Rightarrow b \geqslant 1 \left[ \because - 1 \leqslant \cos x \leqslant 1 \right]\]
APPEARS IN
संबंधित प्रश्न
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.