हिंदी

Find the Values of B for Which the Function F(X) = Sin X − Bx + C is a Decreasing Function on R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?

योग

उत्तर

\[f\left( x \right) = \sin x - bx + c\]

\[f'\left( x \right) = \cos x - b\]

\[\text { Given }:f\left( x \right) \text { is decreasing on R }.\]

\[f'\left( x \right) < 0, \forall x \in R\]

\[ \Rightarrow \cos x - b < 0, \forall x \in R\]

\[\Rightarrow\cos x - b < 0, \forall x \in R \]

\[ \Rightarrow \cos x < b, \forall x \in R\]

\[ \Rightarrow b \geqslant 1 \left[ \because - 1 \leqslant \cos x \leqslant 1 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 36 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×