हिंदी

Show that F(X) = X3 − 15x2 + 75x − 50 is an Increasing Function for All X ∈ R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?

योग

उत्तर

\[f\left( x \right) = x^3 - 15 x^2 + 75x - 50\]

\[f'\left( x \right) = 3 x^2 - 30x + 75\]

\[ = 3 \left( x^2 - 10x + 25 \right)\]

\[ = 3 \left( x - 5 \right)^2 > 0, \forall x \in R \left[ \because \text { Square of any function is always greater than zero } \right]\]

\[\text{ So,f(x)is an increasing function for all x} \in R.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 10 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Every invertible function is


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that f(x) = x – cos x is increasing for all x.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


y = x(x – 3)2 decreases for the values of x given by : ______.


The function f(x) = tanx – x ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Function given by f(x) = sin x is strictly increasing in.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


y = log x satisfies for x > 1, the inequality ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×