Advertisements
Advertisements
प्रश्न
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
उत्तर
\[f\left( x \right) = x^3 - 15 x^2 + 75x - 50\]
\[f'\left( x \right) = 3 x^2 - 30x + 75\]
\[ = 3 \left( x^2 - 10x + 25 \right)\]
\[ = 3 \left( x - 5 \right)^2 > 0, \forall x \in R \left[ \because \text { Square of any function is always greater than zero } \right]\]
\[\text{ So,f(x)is an increasing function for all x} \in R.\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Every invertible function is
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that f(x) = x – cos x is increasing for all x.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
y = x(x – 3)2 decreases for the values of x given by : ______.
The function f(x) = tanx – x ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Function given by f(x) = sin x is strictly increasing in.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
y = log x satisfies for x > 1, the inequality ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.