Advertisements
Advertisements
प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
उत्तर
We have:
`f(x) = 3x^4 − 4x^3 −12x^2 + 5`
`Now, f'(x) = 12x^3 − 12x^2 − 24x`
`Now, f'(x) = 0`
`⇒12x^3 −12x^2−24x = 0`
`⇒12x(x^2−x−2) = 0`
`⇒12x(x^2−2x+x−2)=0`
`⇒12x[x(x−2)+1(x−2)] = 0`
`⇒12x (x+1)(x−2)=0`
`⇒x=0 ; x = −1; x = 2`
So, the points x = −1, x = 0 and x = 2 divide the real line into four disjoint intervals, namely (−∞,−1), (−1,0), (0,2) and (2,∞).
INTERVAL | SIGN OF f ' (x)=12x (x+1)(x −2) | NATURE OF FUNCTION |
(−∞,−1) | (−)(−)(−)=−or<0 | Strictly decreasing |
(−1,0) | (−)(+)(−)=+or>0 | Strictly increasing |
(0,2) | (+)(+)(−) = − or<0 | Strictly decreasing |
(2,∞) | (+)(+)(+) = + or >0 | Strictly increasing |
(a) The given function is strictly increasing in the intervals (−1,0) ∪ (2,∞).
(b) The given function is strictly decreasing in the intervals (−∞,−1) ∪ (0,2).
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
The function f(x) = xx decreases on the interval
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The function f(x) = 9 - x5 - x7 is decreasing for
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = tan-1 x is ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Show that function f(x) = tan x is increasing in `(0, π/2)`.
y = log x satisfies for x > 1, the inequality ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.