Advertisements
Advertisements
प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
उत्तर
Area of an equilateral triangle, `A = sqrt3/4 a^2`
where
a = Side of an equilateral triangle
Given:
`(da)/(dt)` =2 cm/s
Now,
`(dA)/(dt)=d/dt(sqrt3/4a^2)`
`=sqrt3/4 xx 2 xx a xx(da)/(dt)`
`=(sqrt3a)/2xx(da)/(dt)`
`=(sqrt3a)/2xx2`
`=sqrt3a` cm2/s
`therefore [(dA)/(dt)]_(a=20)=20sqrt3` cm2/s
Hence, the area is increasing at the rate of `20sqrt3` cm2/s when the side of the triangle is 20 cm.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The slope of tangent at any point (a, b) is also called as ______.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Which of the following graph represent the strictly increasing function.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
The function f(x) = x3 + 3x is increasing in interval ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.