हिंदी

The Function F ( X ) = Log E ( X 3 + √ X 6 + 1 ) is of the Following Types: - Mathematics

Advertisements
Advertisements

प्रश्न

The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:

विकल्प

  • even and increasing

  • odd and increasing

  • even and decreasing

  • odd and decreasing

MCQ

उत्तर

odd and increasing

\[f(x) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\]

\[ \Rightarrow f( - x) = \log_e \left( - x^3 + \sqrt{x^6 + 1} \right)\]

\[ = \log_e \left\{ \frac{\left( - x^3 + \sqrt{x^6 + 1} \right)\left( x^3 + \sqrt{x^6 + 1} \right)}{x^3 + \sqrt{x^6 + 1}} \right\}\]

\[ = \log_e \left( \frac{x^6 + 1 - x^6}{x^3 + \sqrt{x^6 + 1}} \right)\]

\[ = \log_e \left( \frac{1}{x^3 + \sqrt{x^6 + 1}} \right)\]

\[ = - \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\]

\[ = - f(x) \]

\[\text { Hence,} f( - x) = - f(x)\]

\[\text { Therefore, it is an odd function } .\]

\[f(x) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\]

\[\frac{d}{dx}\left\{ f(x) \right\} = \left( \frac{1}{x^3 + \sqrt{x^6 + 1}} \right) \times \left( 3 x^2 + \frac{1}{2\sqrt{x^6 + 1}} \times 6 x^5 \right)\]

\[ = \left( \frac{1}{x^3 + \sqrt{x^6 + 1}} \right) \times \left( \frac{6 x^2 \sqrt{x^6 + 1} + 6 x^5}{2\sqrt{x^6 + 1}} \right)\]

\[ = \left( \frac{1}{x^3 + \sqrt{x^6 + 1}} \right) \times \left\{ \frac{6 x^2 \left( \sqrt{x^6 + 1} + x^3 \right)}{2\sqrt{x^6 + 1}} \right\}\]

\[ = \left( \frac{6 x^2}{2\sqrt{x^6 + 1}} \right) > 0\]

\[\text { Therefore, given function is an increasing function } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 7 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The slope of tangent at any point (a, b) is also called as ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


y = x(x – 3)2 decreases for the values of x given by : ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


y = log x satisfies for x > 1, the inequality ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×